[tex]\Large \begin{aligned}\\&9^\frac{4}{x} > \sqrt3\qquad(x\not=0)\\&\!\!\left(3^2\right)^{\frac{4}{x}} > 3^{\frac{1}{2}\\&3^{\frac{8}{x}} > 3^{\frac{1}{2}\\&\dfrac{8}{x} > \dfrac{1}{2}\Big|\cdot 2x^2\\&16x > x^2\\&x^2-16x < 0\\&x(x-16) < 0\\&x\in(0,16)\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]\Large \begin{aligned}\\&9^\frac{4}{x} > \sqrt3\qquad(x\not=0)\\&\!\!\left(3^2\right)^{\frac{4}{x}} > 3^{\frac{1}{2}\\&3^{\frac{8}{x}} > 3^{\frac{1}{2}\\&\dfrac{8}{x} > \dfrac{1}{2}\Big|\cdot 2x^2\\&16x > x^2\\&x^2-16x < 0\\&x(x-16) < 0\\&x\in(0,16)\end{aligned}[/tex]