Jawab:
3
Penjelasan dengan langkah-langkah:
Metode Sarrus
[tex]\begin{aligned}&\begin{vmatrix}5 & -x & 2\\ 4 & 8 & 2\\ 9 & x & 1\end{vmatrix}=-152\\&\begin{vmatrix}5_{\searrow} & -x_{\searrow} & 2_{\searrow}^{\nearrow -}\\ 4 & 8_{\searrow}^{\nearrow} & 2_{\searrow}^{\nearrow}\\ 9^{\nearrow} & x^{\nearrow} & 1_{\searrow +}^{\nearrow}\end{vmatrix}\begin{matrix}5^{\nearrow -} & -x^{\nearrow -}\\ 4_{\searrow}^{\nearrow} & 8\\ 9_{\searrow +} & x_{\searrow +}\end{matrix}=-152\end{aligned}[/tex]
[tex]\begin{aligned}&5(8)(1)+(-x)(2)(9)+2(4)(x)-9(8)(2)-x(2)(5)-1(4)(-x)=-152\\&40-18x+8x-144-10x+4x=-152\\&-16x-104=-152\\&-16x=-48\\&x=3\end{aligned}[/tex]
Metode Laplace
[tex]\begin{aligned}&\begin{vmatrix}5 & -x & 2\\ 4 & 8 & 2\\ 9 & x & 1\end{vmatrix}=-152\\&5\begin{vmatrix}8 & 2\\ x & 1\end{vmatrix}-(-x)\begin{vmatrix}4 & 2\\ 9 & 1\end{vmatrix}+2\begin{vmatrix}4 & 8\\ 9 & x\end{vmatrix}=-152\end{aligned}[/tex]
[tex]\begin{aligned}&5(8\cdot1-2x)+x(4\cdot1-2\cdot9)+2(4x-8\cdot9)=-152\\&5(8-2x)+x(4-18)+2(4x-72)=-152\\&40-10x-14x+8x-144=-152\\&-16x-104=-152\\&x=3\end{aligned}[/tex]
Jika sebuah Matrix, katakanlah
A = [tex]\begin{bmatrix}5&-x&2\\4&8&2\\9&x&1\end{bmatrix}[/tex] , memiliki nilai determinan -152 , maka nilai x yang memenuhi adalah.. 3.
Diketahui:
Matriks A = [tex]\begin{bmatrix}5&-x&2\\4&8&2\\9&x&1\end{bmatrix}[/tex]
det A = -152
Ditanyakan:
Nilai x?
Penyelesaian:
[tex]A =\begin{bmatrix}5&-x&2\\4&8&2\\9&x&1\end{bmatrix}[/tex]
[tex]\begin{aligned}det \: A &=\left|\begin{matrix}5&-x&2\\4&8&2\\9&x&1\end{matrix} \right| \begin{matrix}5& - x \\ 4&8 \\ 9&x\end{matrix} \\ \footnotesize{- 152}& = \footnotesize{ (5.8.1 + ( - x).2.9 + 2.4.x) - (2.8.9 + 5.2.x + ( - x).4.1)} \\\footnotesize{- 152}& = \footnotesize{( 40 + ( - 18x) + 8x) - (144 + 10x + ( - 4x))} \\\footnotesize{- 152}& = \footnotesize{(40 - 10x) - (144 + 6x)} \\ \footnotesize{- 152}& = \footnotesize40 - 10x - 144 - 6x \\ \footnotesize{- 152}& = \footnotesize - 104 - 16x \\ \footnotesize{- 152 + 104}& = \footnotesize{ - 104 - 16x + 104} \\ \footnotesize{- 48}& = \footnotesize{ - 16x} \\ \footnotesize{- 48 \times \left( - \frac{1}{16} \right)}& = \footnotesize{ - 16x \times \left( - \frac{1}{16} \right)} \\ \footnotesize{x}& = 3\end{aligned}[/tex]
Kesimpulan:
Jadi, nilai x pada matriks A jika determinan matriks A = -152 adalah 3.
Kelas: 11
Mapel: Matematika
Materi: Matriks
Kode: 11.2.5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Jawab:
3
Penjelasan dengan langkah-langkah:
Metode Sarrus
[tex]\begin{aligned}&\begin{vmatrix}5 & -x & 2\\ 4 & 8 & 2\\ 9 & x & 1\end{vmatrix}=-152\\&\begin{vmatrix}5_{\searrow} & -x_{\searrow} & 2_{\searrow}^{\nearrow -}\\ 4 & 8_{\searrow}^{\nearrow} & 2_{\searrow}^{\nearrow}\\ 9^{\nearrow} & x^{\nearrow} & 1_{\searrow +}^{\nearrow}\end{vmatrix}\begin{matrix}5^{\nearrow -} & -x^{\nearrow -}\\ 4_{\searrow}^{\nearrow} & 8\\ 9_{\searrow +} & x_{\searrow +}\end{matrix}=-152\end{aligned}[/tex]
[tex]\begin{aligned}&5(8)(1)+(-x)(2)(9)+2(4)(x)-9(8)(2)-x(2)(5)-1(4)(-x)=-152\\&40-18x+8x-144-10x+4x=-152\\&-16x-104=-152\\&-16x=-48\\&x=3\end{aligned}[/tex]
Metode Laplace
[tex]\begin{aligned}&\begin{vmatrix}5 & -x & 2\\ 4 & 8 & 2\\ 9 & x & 1\end{vmatrix}=-152\\&5\begin{vmatrix}8 & 2\\ x & 1\end{vmatrix}-(-x)\begin{vmatrix}4 & 2\\ 9 & 1\end{vmatrix}+2\begin{vmatrix}4 & 8\\ 9 & x\end{vmatrix}=-152\end{aligned}[/tex]
[tex]\begin{aligned}&5(8\cdot1-2x)+x(4\cdot1-2\cdot9)+2(4x-8\cdot9)=-152\\&5(8-2x)+x(4-18)+2(4x-72)=-152\\&40-10x-14x+8x-144=-152\\&-16x-104=-152\\&x=3\end{aligned}[/tex]
Jika sebuah Matrix, katakanlah
A = [tex]\begin{bmatrix}5&-x&2\\4&8&2\\9&x&1\end{bmatrix}[/tex] , memiliki nilai determinan -152 , maka nilai x yang memenuhi adalah.. 3.
Pembahasan
Diketahui:
Matriks A = [tex]\begin{bmatrix}5&-x&2\\4&8&2\\9&x&1\end{bmatrix}[/tex]
det A = -152
Ditanyakan:
Nilai x?
Penyelesaian:
[tex]A =\begin{bmatrix}5&-x&2\\4&8&2\\9&x&1\end{bmatrix}[/tex]
[tex]\begin{aligned}det \: A &=\left|\begin{matrix}5&-x&2\\4&8&2\\9&x&1\end{matrix} \right| \begin{matrix}5& - x \\ 4&8 \\ 9&x\end{matrix} \\ \footnotesize{- 152}& = \footnotesize{ (5.8.1 + ( - x).2.9 + 2.4.x) - (2.8.9 + 5.2.x + ( - x).4.1)} \\\footnotesize{- 152}& = \footnotesize{( 40 + ( - 18x) + 8x) - (144 + 10x + ( - 4x))} \\\footnotesize{- 152}& = \footnotesize{(40 - 10x) - (144 + 6x)} \\ \footnotesize{- 152}& = \footnotesize40 - 10x - 144 - 6x \\ \footnotesize{- 152}& = \footnotesize - 104 - 16x \\ \footnotesize{- 152 + 104}& = \footnotesize{ - 104 - 16x + 104} \\ \footnotesize{- 48}& = \footnotesize{ - 16x} \\ \footnotesize{- 48 \times \left( - \frac{1}{16} \right)}& = \footnotesize{ - 16x \times \left( - \frac{1}{16} \right)} \\ \footnotesize{x}& = 3\end{aligned}[/tex]
Kesimpulan:
Jadi, nilai x pada matriks A jika determinan matriks A = -152 adalah 3.
Pelajari Lebih Lanjut
Detail Jawaban
Kelas: 11
Mapel: Matematika
Materi: Matriks
Kode: 11.2.5