Penjelasan dengan langkah-langkah:
[tex]\tt 20^{x^{23}}= 23^{x^{20}}\\\\log_{20}(20^{(x^{23})})= log_{20}(23^{(x^{20})}) \\\\x^{23}=x^{20}(log_{20}(23))\\\\x^{23}-log_{20}(23)x^{20}=log_{20}(23)x^{20}-log_{20}(23)x^{20}\\\\x^{23}-log_{20}(23)x^{20}=0\\\\x^3=log_{20}(23)\\\\x = \sqrt[3]{\tt log_{20}(23)}\\\\x^{20}=0\\\\x=0[/tex]
Himpunan penyelesaian dari persamaan [tex]\tt 20^{x^{23}}=23^{x^{20}}[/tex] adalah [tex]\tt Hp=\{0,\sqrt[3]{\tt (^{20}log(23))}\}[/tex]
Aljabar
__
[tex] \sf{ {20}^{ {x}^{23} } = {23}^{ {x}^{20} }} \\ \\ \sf{{x}^{23} \: log \: 20 = {x}^{20} \: log \: 23} \\ \\ \sf{{x}^{20} \: ( log \: 23 - \: {x}^{3} \: log \: 20)} \: = \: 0 \\ \\ \sf{x = 0 \: \: atau \: \: {x}^{3} = \ ^{20}log \: 23 } \\ \\ \sf{x = 0 \: \: atau \: \: x = \sqrt[3]{^{20}log \: 23} }[/tex]
•
HP = {0 , ³√(²⁰log 23)}
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
[tex]\tt 20^{x^{23}}= 23^{x^{20}}\\\\log_{20}(20^{(x^{23})})= log_{20}(23^{(x^{20})}) \\\\x^{23}=x^{20}(log_{20}(23))\\\\x^{23}-log_{20}(23)x^{20}=log_{20}(23)x^{20}-log_{20}(23)x^{20}\\\\x^{23}-log_{20}(23)x^{20}=0\\\\x^3=log_{20}(23)\\\\x = \sqrt[3]{\tt log_{20}(23)}\\\\x^{20}=0\\\\x=0[/tex]
Himpunan penyelesaian dari persamaan [tex]\tt 20^{x^{23}}=23^{x^{20}}[/tex] adalah [tex]\tt Hp=\{0,\sqrt[3]{\tt (^{20}log(23))}\}[/tex]
Kenapa pakai rentang? Kan jelas diskrit solusinya.
Verified answer
Aljabar
__
[tex] \sf{ {20}^{ {x}^{23} } = {23}^{ {x}^{20} }} \\ \\ \sf{{x}^{23} \: log \: 20 = {x}^{20} \: log \: 23} \\ \\ \sf{{x}^{20} \: ( log \: 23 - \: {x}^{3} \: log \: 20)} \: = \: 0 \\ \\ \sf{x = 0 \: \: atau \: \: {x}^{3} = \ ^{20}log \: 23 } \\ \\ \sf{x = 0 \: \: atau \: \: x = \sqrt[3]{^{20}log \: 23} }[/tex]
•
HP = {0 , ³√(²⁰log 23)}