Odpowiedź:
S = ( 2 + 4 + 8 + ... + [tex]2^{2022} ) = 2*\frac{1 - 2^{2022}}{1 - 2} = -2*(1 - 2^{2022}) = - 2 + 2^{2023}[/tex]
bo [tex]a_1 = 2[/tex] q = 2 n = 2022
więc
[tex]log_2 [ 2 + S ] = log_2 2^{2023} = 2023*log_2 2 = 2023*1 = 2023[/tex]
Odp. D
=========
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
S = ( 2 + 4 + 8 + ... + [tex]2^{2022} ) = 2*\frac{1 - 2^{2022}}{1 - 2} = -2*(1 - 2^{2022}) = - 2 + 2^{2023}[/tex]
bo [tex]a_1 = 2[/tex] q = 2 n = 2022
więc
[tex]log_2 [ 2 + S ] = log_2 2^{2023} = 2023*log_2 2 = 2023*1 = 2023[/tex]
Odp. D
=========
Szczegółowe wyjaśnienie: