Odpowiedź:
[tex]\displaystyle x+x^{2} +x^{5} +.......=\frac{2}{3} \qquad q=x^{2} \quad |q| < 1\quad \Rightarrow \quad x^{2} < 1\quad \Rightarrow \quad x\in(-1,1)\\S=\frac{a_1}{1-q} \\\frac{x}{1-x^{2} } =\frac{2}{3} \quad \Rightarrow\quad 3x=2(1-x^{2} )\quad \Rightarrow\quad 2x^{2} +3x-2=0\\\Delta =9+16=25\qquad \sqrt{\Delta } =5\\x_1=\frac{-3+5}{4} =\frac{1}{2} \qquad x_2=\frac{-3-5}{4} =-2\notin D\\\underline{x=\frac{1}{2} }[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\displaystyle x+x^{2} +x^{5} +.......=\frac{2}{3} \qquad q=x^{2} \quad |q| < 1\quad \Rightarrow \quad x^{2} < 1\quad \Rightarrow \quad x\in(-1,1)\\S=\frac{a_1}{1-q} \\\frac{x}{1-x^{2} } =\frac{2}{3} \quad \Rightarrow\quad 3x=2(1-x^{2} )\quad \Rightarrow\quad 2x^{2} +3x-2=0\\\Delta =9+16=25\qquad \sqrt{\Delta } =5\\x_1=\frac{-3+5}{4} =\frac{1}{2} \qquad x_2=\frac{-3-5}{4} =-2\notin D\\\underline{x=\frac{1}{2} }[/tex]