Jawaban:
A. -1
Penjelasan dengan langkah-langkah:
misalkan 2018 = c
Maka 2019 = 2018 + 1 = c + 1
2017 = 2018 - 1 = c - 1
Lanjut..
[tex] \rm\displaystyle\frac{2019^{2}(2018^{2}-2017) }{(2018^{2} -1)(2018^{3} +1)} \times \frac{2017^{2} (2018^{2}+2019) }{1-2018^{3} }[/tex]
[tex] \rm\displaystyle=\frac{(c + 1)^{2}(c^{2}-(c - 1)) }{(c^{2} -1)(c^{3} +1)} \times \frac{(c - 1)^{2} (c^{2}+(c + 1)) }{1- c^{3} }[/tex]
[tex] \rm\displaystyle=\frac{(c + 1)^{2}(c^{2}-c + 1) (c - 1)^{2} (c^{2}+c + 1) }{(c^{2} -1)(c^{3} +1)(1- c^{3}) }[/tex]
[tex]\rm\displaystyle= \frac{(c + 1)^{2}(c^{2}-c + 1) (c - 1)^{2} (c^{2}+c + 1) }{(c -1)(c + 1)(c^{3} +1)(1- c^{3}) }[/tex]
[tex] \rm\displaystyle=\frac{(c + 1)(c^{2}-c + 1) (c - 1) (c^{2}+c + 1) }{(c^{3} +1)(1- c^{3}) }[/tex]
[tex] \rm\displaystyle=\frac{(c + 1)(c^{2}-c + 1) (c - 1) (c^{2}+c + 1) }{(c + 1)(c^{2} - c +1)(1- c^{3}) }[/tex]
[tex] \rm\displaystyle=\frac{\bcancel{(c + 1)(c^{2}-c + 1)} (c - 1) (c^{2}+c + 1) }{\bcancel{(c + 1)(c^{2} - c +1)}(1- c^{3}) }[/tex]
[tex]\rm\displaystyle= \frac{ (c - 1) (c^{2}+c + 1) }{(1- c^{3}) }[/tex]
[tex] \displaystyle=\frac{ (c - 1) (c^{2}+c + 1) }{(1 - c)(1 + c +c^{2}) }[/tex]
[tex] \displaystyle=\frac{ (c - 1) (c^{2}+c + 1) }{(1 - c)(c^{2} + c + 1) }[/tex]
[tex]\rm\displaystyle=\frac{ (c - 1) \cancel{(c^{2}+c + 1)} }{(1 - c) \cancel{(c^{2} + c + 1)} }[/tex]
[tex] \rm\displaystyle=\frac{ (c - 1) }{(1- c) }[/tex]
[tex] \displaystyle=\frac{ (2017) }{(1- 2018) }[/tex]
[tex] \displaystyle=\frac{ (2017) }{( - 2017) }[/tex]
[tex] \displaystyle= \bold{ - 1}[/tex]
Jawaban A.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
A. -1
Penjelasan dengan langkah-langkah:
misalkan 2018 = c
Maka 2019 = 2018 + 1 = c + 1
2017 = 2018 - 1 = c - 1
Lanjut..
[tex] \rm\displaystyle\frac{2019^{2}(2018^{2}-2017) }{(2018^{2} -1)(2018^{3} +1)} \times \frac{2017^{2} (2018^{2}+2019) }{1-2018^{3} }[/tex]
[tex] \rm\displaystyle=\frac{(c + 1)^{2}(c^{2}-(c - 1)) }{(c^{2} -1)(c^{3} +1)} \times \frac{(c - 1)^{2} (c^{2}+(c + 1)) }{1- c^{3} }[/tex]
[tex] \rm\displaystyle=\frac{(c + 1)^{2}(c^{2}-c + 1) (c - 1)^{2} (c^{2}+c + 1) }{(c^{2} -1)(c^{3} +1)(1- c^{3}) }[/tex]
[tex]\rm\displaystyle= \frac{(c + 1)^{2}(c^{2}-c + 1) (c - 1)^{2} (c^{2}+c + 1) }{(c -1)(c + 1)(c^{3} +1)(1- c^{3}) }[/tex]
[tex] \rm\displaystyle=\frac{(c + 1)(c^{2}-c + 1) (c - 1) (c^{2}+c + 1) }{(c^{3} +1)(1- c^{3}) }[/tex]
[tex] \rm\displaystyle=\frac{(c + 1)(c^{2}-c + 1) (c - 1) (c^{2}+c + 1) }{(c + 1)(c^{2} - c +1)(1- c^{3}) }[/tex]
[tex] \rm\displaystyle=\frac{\bcancel{(c + 1)(c^{2}-c + 1)} (c - 1) (c^{2}+c + 1) }{\bcancel{(c + 1)(c^{2} - c +1)}(1- c^{3}) }[/tex]
[tex]\rm\displaystyle= \frac{ (c - 1) (c^{2}+c + 1) }{(1- c^{3}) }[/tex]
[tex] \displaystyle=\frac{ (c - 1) (c^{2}+c + 1) }{(1 - c)(1 + c +c^{2}) }[/tex]
[tex] \displaystyle=\frac{ (c - 1) (c^{2}+c + 1) }{(1 - c)(c^{2} + c + 1) }[/tex]
[tex]\rm\displaystyle=\frac{ (c - 1) \cancel{(c^{2}+c + 1)} }{(1 - c) \cancel{(c^{2} + c + 1)} }[/tex]
[tex] \rm\displaystyle=\frac{ (c - 1) }{(1- c) }[/tex]
[tex] \displaystyle=\frac{ (2017) }{(1- 2018) }[/tex]
[tex] \displaystyle=\frac{ (2017) }{( - 2017) }[/tex]
[tex] \displaystyle= \bold{ - 1}[/tex]
Jawaban A.