Jawaban:
sec x + 1
Penjelasan dengan langkah-langkah:
```
csc 2 x (1 + sec x) - cotx (csc x + cotx)
= (1 / sin 2 x) (1 + 1 / cos x) - (cos x / sin x) (1 / sin x + cos x / sin x)
= (1 + 1 / cos x) / sin x - (cos x + 1) / sin² x
= (cos x + 1 + 1 / cos x) / sin x - (cos² x + 1) / sin² x
= (cos² x + 1 + 1 / cos x - cos² x) / sin x
= (1 + 1 / cos x) / sin x
= (1 + sec x) / sin x
= sec x + 1
Jadi, identitas trigonometri yang disederhanakan adalah **sec x + 1**.
Jawaban dengan penjelasan:
[tex]csc \: 2 \times (1 + sec \: x) - cot \: x(csc \: x + cot \: x) \\ = ( \frac{1}{sin \: 2x} )(1 + \frac{1}{cos \: x}) - ( \frac{cos \: x}{sin \: x})( \frac{1}{sin \: x + \frac{cos \: x}{sin \: x} } ) \\ = (1 + \frac{1}{cos \: x}) / \: sin \: x - \frac{(cos \: x + 1)}{sin {}^{2} \: x } \\ = (\frac{cos \: x + 1 + 1}{cos \: x})/sin \: x - (\frac{cos {}^{2} \: x + 1 }{sin {}^{2} \: x } ) \\ = (\frac{cos {}^{2} \: x + 1 + 1 }{cos \: x - cos {}^{2} \: x} )/sin \: x \\ = (\frac{1 + 1}{cos \: x}) /sin \: x \\ = (\frac{1 + sec \: x}{sin \: x} ) \\ = sec \: x + 1[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
sec x + 1
Penjelasan dengan langkah-langkah:
```
csc 2 x (1 + sec x) - cotx (csc x + cotx)
= (1 / sin 2 x) (1 + 1 / cos x) - (cos x / sin x) (1 / sin x + cos x / sin x)
= (1 + 1 / cos x) / sin x - (cos x + 1) / sin² x
= (cos x + 1 + 1 / cos x) / sin x - (cos² x + 1) / sin² x
= (cos² x + 1 + 1 / cos x - cos² x) / sin x
= (1 + 1 / cos x) / sin x
= (1 + sec x) / sin x
= sec x + 1
```
Jadi, identitas trigonometri yang disederhanakan adalah **sec x + 1**.
Verified answer
Jawaban dengan penjelasan:
sec x + 1
[tex]csc \: 2 \times (1 + sec \: x) - cot \: x(csc \: x + cot \: x) \\ = ( \frac{1}{sin \: 2x} )(1 + \frac{1}{cos \: x}) - ( \frac{cos \: x}{sin \: x})( \frac{1}{sin \: x + \frac{cos \: x}{sin \: x} } ) \\ = (1 + \frac{1}{cos \: x}) / \: sin \: x - \frac{(cos \: x + 1)}{sin {}^{2} \: x } \\ = (\frac{cos \: x + 1 + 1}{cos \: x})/sin \: x - (\frac{cos {}^{2} \: x + 1 }{sin {}^{2} \: x } ) \\ = (\frac{cos {}^{2} \: x + 1 + 1 }{cos \: x - cos {}^{2} \: x} )/sin \: x \\ = (\frac{1 + 1}{cos \: x}) /sin \: x \\ = (\frac{1 + sec \: x}{sin \: x} ) \\ = sec \: x + 1[/tex]