Materi : Trigonometri
[tex][tex]\displaystyle \frac{1+\sin x-\cos x}{1+\sin x+\cos x}+\frac{1+\sin x+\cos x}{1+\sin x-\cos x}[/tex][/tex]
( 1 + sin x + cos x )/( 1 + sin x - cos x ) + ( 1 + sin x - cos x )/( 1 + sin x + cos x )
Sama kedua pecahan
= [ ( 1 + sin x + cos x )² + ( 1 + sin x - cos x )² ]/[ ( 1 + sin x + cos x )( 1 + sin x - cos x ) ]
____________________________
( 1 + sin x + cos x )²
= sin² x + cos² x + 2.sin x.cos x + 2.sin x + 2.cos x + 1
---
( 1 + sin x - cos x )²
= sin² x + cos² x - 2.sin x.cos x + 2.sin x - 2.cos x + 1
( 1 + sin x + cos x )( 1 + sin x - cos x )
= sin² x + cos² x + 2.sin x + 1
= ( 2[ sin² x + cos² x ] + 4.sin x + 2 )/( sin² x + cos² x + 2.sin x + 1 )
Dengan rumus sin² x + cos² x = 1
= ( 2[1] + 4.sin x + 2 )/( [1] + 2.sin x + 1 )
= ( 4.sin x + 4 )/( 2.sin x + 2 )
= 4/2( sin x + 1 )
= 2.sin x + 2
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Materi : Trigonometri
[tex][tex]\displaystyle \frac{1+\sin x-\cos x}{1+\sin x+\cos x}+\frac{1+\sin x+\cos x}{1+\sin x-\cos x}[/tex][/tex]
( 1 + sin x + cos x )/( 1 + sin x - cos x ) + ( 1 + sin x - cos x )/( 1 + sin x + cos x )
Sama kedua pecahan
= [ ( 1 + sin x + cos x )² + ( 1 + sin x - cos x )² ]/[ ( 1 + sin x + cos x )( 1 + sin x - cos x ) ]
____________________________
( 1 + sin x + cos x )²
= sin² x + cos² x + 2.sin x.cos x + 2.sin x + 2.cos x + 1
---
( 1 + sin x - cos x )²
= sin² x + cos² x - 2.sin x.cos x + 2.sin x - 2.cos x + 1
---
( 1 + sin x + cos x )( 1 + sin x - cos x )
= sin² x + cos² x + 2.sin x + 1
____________________________
= ( 2[ sin² x + cos² x ] + 4.sin x + 2 )/( sin² x + cos² x + 2.sin x + 1 )
---
Dengan rumus sin² x + cos² x = 1
---
= ( 2[1] + 4.sin x + 2 )/( [1] + 2.sin x + 1 )
= ( 4.sin x + 4 )/( 2.sin x + 2 )
= 4/2( sin x + 1 )
= 2.sin x + 2
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]