Jawaban:
Aljabar
[tex]x = 2p - 4q \\ y = - p + 2q[/tex]
[tex] \frac{2 {x}^{2} - 3xy + {y}^{2} }{ {x}^{2} - {y}^{2} } = \frac{(x - y)(2x - y)}{(x + y)(x - y)} = \frac{2x - y}{x + y} \\ [/tex]
[tex] \frac{2x - y}{x + y} = \frac{2(2p - 4q) - ( - p + 2q)}{(2p - 4q) + ( - p + 2q)} \\ \frac{4p - 8q + p - 2q}{2p - 4q - p + 2q} \\ \frac{5p - 10q}{p - 2q} = \frac{5(p - 2q)}{(p - 2q)} = 5[/tex]
Jawab:C. = 5
Penjelasan:Diketahui:x = 2p-4qy = -p+2q
2x² - 3xy + y² = 2x² - 2xy - xy + y²= (2x-y)(x-y)
x² - y² = (x+y)(x-y)
(2x² - 3xy + y²) ÷ (x² - y²)= (2x-y)(x-y) ÷ [(x+y)(x-y)]= (2x-y) ÷ (x+y)= (2(2p-4q)-(-p+2q)) ÷ (2p-4q-p+2q)= (4p-8q+p-2q) ÷ (2p-4q-p+2q)= (5p-10q) ÷ (p-2q)= (5(p-2q)) ÷ (p-2q)= 5
(xcvi)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Jawaban:
Aljabar
[tex]x = 2p - 4q \\ y = - p + 2q[/tex]
[tex] \frac{2 {x}^{2} - 3xy + {y}^{2} }{ {x}^{2} - {y}^{2} } = \frac{(x - y)(2x - y)}{(x + y)(x - y)} = \frac{2x - y}{x + y} \\ [/tex]
[tex] \frac{2x - y}{x + y} = \frac{2(2p - 4q) - ( - p + 2q)}{(2p - 4q) + ( - p + 2q)} \\ \frac{4p - 8q + p - 2q}{2p - 4q - p + 2q} \\ \frac{5p - 10q}{p - 2q} = \frac{5(p - 2q)}{(p - 2q)} = 5[/tex]
Jawab:
C. = 5
Penjelasan:
Diketahui:
x = 2p-4q
y = -p+2q
2x² - 3xy + y²
= 2x² - 2xy - xy + y²
= (2x-y)(x-y)
x² - y² = (x+y)(x-y)
(2x² - 3xy + y²) ÷ (x² - y²)
= (2x-y)(x-y) ÷ [(x+y)(x-y)]
= (2x-y) ÷ (x+y)
= (2(2p-4q)-(-p+2q)) ÷ (2p-4q-p+2q)
= (4p-8q+p-2q) ÷ (2p-4q-p+2q)
= (5p-10q) ÷ (p-2q)
= (5(p-2q)) ÷ (p-2q)
= 5
(xcvi)