Jawaban:
D. 6
Penjelasan dengan langkah-langkah:
Jika f(x) = a + bx
Maka F(x):
[tex] = \displaystyle \rm \frac{a}{0 + 1} {x}^{0 + 1} + \frac{b}{1 + 1} {x}^{1 + 1}[/tex]
[tex] = \displaystyle ax + \frac{b {x}^{2} }{2} [/tex]
Jadi, nilai 2a + b:
⇒ F(1) - F(0) = 3
[tex] \rm \displaystyle (a(1) + \frac{b {(1)}^{2} }{2}) - ( a(0) + \frac{b {(0)}^{2} }{2} ) = 3[/tex]
[tex] \displaystyle a + \frac{b }{2} = 3[/tex]
[tex]\displaystyle \frac{2a}{2}+\frac{b }{2} = 3[/tex]
[tex] \displaystyle \frac{2a + b }{2} = 3[/tex]
[tex] \displaystyle 2a + b = 3(2)[/tex]
[tex] \displaystyle 2a + b = \bold{6}[/tex]
Jadi, 2a + b = 6 (D)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Jawaban:
D. 6
Penjelasan dengan langkah-langkah:
Jika f(x) = a + bx
Maka F(x):
[tex] = \displaystyle \rm \frac{a}{0 + 1} {x}^{0 + 1} + \frac{b}{1 + 1} {x}^{1 + 1}[/tex]
[tex] = \displaystyle ax + \frac{b {x}^{2} }{2} [/tex]
Jadi, nilai 2a + b:
⇒ F(1) - F(0) = 3
[tex] \rm \displaystyle (a(1) + \frac{b {(1)}^{2} }{2}) - ( a(0) + \frac{b {(0)}^{2} }{2} ) = 3[/tex]
[tex] \displaystyle a + \frac{b }{2} = 3[/tex]
[tex]\displaystyle \frac{2a}{2}+\frac{b }{2} = 3[/tex]
[tex] \displaystyle \frac{2a + b }{2} = 3[/tex]
[tex] \displaystyle 2a + b = 3(2)[/tex]
[tex] \displaystyle 2a + b = \bold{6}[/tex]
Jadi, 2a + b = 6 (D)