Jawaban:
maaf ya kak kalo salah , semoga membantu ya kak
Jika [tex]2^x=2-\sqrt{3}[/tex] maka nilai dari [tex]{}^{2+\sqrt{3}}\log4^x[/tex] adalah –2.
Logaritma
[tex]\begin{aligned}&{}^{2+\sqrt{3}}\log4^x\\&{=\ }\frac{\log4^x}{\log\left(2+\sqrt{3}\right)}\\&{=\ }\frac{\log\left(2^x\right)^2}{\log\left(2+\sqrt{3}\right)}\\&{=\ }2\cdot\frac{\log2^x}{\log\left(2+\sqrt{3}\right)}\\&{=\ }2\cdot\frac{\log\left(2-\sqrt{3}\right)}{\log\left(2+\sqrt{3}\right)}\\&{\quad...\ }\left[\begin{aligned}&\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=4-3=1\\&\Rightarrow 2-\sqrt{3}=\frac{1}{2+\sqrt{3}}=\left(2+\sqrt{3}\right)^{-1}\end{aligned}\right]\end{aligned}[/tex][tex]\begin{aligned}&{=\ }2\cdot\frac{\log\left(2+\sqrt{3}\right)^{-1}}{\log\left(2+\sqrt{3}\right)}\\&{=\ }2\cdot(-1)\cdot\frac{\cancel{\log\left(2+\sqrt{3}\right)}}{\cancel{\log\left(2+\sqrt{3}\right)}}\\&{=\ }\boxed{\bf{-2}}\quad\blacksquare\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
maaf ya kak kalo salah , semoga membantu ya kak
Verified answer
Jika [tex]2^x=2-\sqrt{3}[/tex] maka nilai dari [tex]{}^{2+\sqrt{3}}\log4^x[/tex] adalah –2.
Penjelasan dengan langkah-langkah:
Logaritma
[tex]\begin{aligned}&{}^{2+\sqrt{3}}\log4^x\\&{=\ }\frac{\log4^x}{\log\left(2+\sqrt{3}\right)}\\&{=\ }\frac{\log\left(2^x\right)^2}{\log\left(2+\sqrt{3}\right)}\\&{=\ }2\cdot\frac{\log2^x}{\log\left(2+\sqrt{3}\right)}\\&{=\ }2\cdot\frac{\log\left(2-\sqrt{3}\right)}{\log\left(2+\sqrt{3}\right)}\\&{\quad...\ }\left[\begin{aligned}&\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=4-3=1\\&\Rightarrow 2-\sqrt{3}=\frac{1}{2+\sqrt{3}}=\left(2+\sqrt{3}\right)^{-1}\end{aligned}\right]\end{aligned}[/tex]
[tex]\begin{aligned}&{=\ }2\cdot\frac{\log\left(2+\sqrt{3}\right)^{-1}}{\log\left(2+\sqrt{3}\right)}\\&{=\ }2\cdot(-1)\cdot\frac{\cancel{\log\left(2+\sqrt{3}\right)}}{\cancel{\log\left(2+\sqrt{3}\right)}}\\&{=\ }\boxed{\bf{-2}}\quad\blacksquare\end{aligned}[/tex]