Penjelasan dengan langkah-langkah:
[tex]\rm \sqrt{ \frac{ ln(8) }{ ln(16) } + \frac{ ln(27) }{ ln(81) } } = x \\ \\ sifat \: logaritma \: \: dimana \\ \\ {}^{a} log \: b \: = \frac{ ln(b) }{ ln(a) } \\ \: maka \\ \\ \sqrt{ {}^{16}log \: 8 \: + {}^{81} \: log \: 27 } = x \\ \\ \sqrt{ { {}^{2} }^{4}log \: {2}^{3} \: + \: { {}^{3} }^{4} log \: {3}^{3} } = x \\ \\ \sqrt{ \frac{3}{4} + \frac{3}{4} } = x \\ \\ \sqrt{ \frac{6}{4} } = x \\ \frac{ \sqrt{6} }{2} = x[/tex]
Jika k = x
Maka 2k
= 2 × √6/2
= √6
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Penjelasan dengan langkah-langkah:
[tex]\rm \sqrt{ \frac{ ln(8) }{ ln(16) } + \frac{ ln(27) }{ ln(81) } } = x \\ \\ sifat \: logaritma \: \: dimana \\ \\ {}^{a} log \: b \: = \frac{ ln(b) }{ ln(a) } \\ \: maka \\ \\ \sqrt{ {}^{16}log \: 8 \: + {}^{81} \: log \: 27 } = x \\ \\ \sqrt{ { {}^{2} }^{4}log \: {2}^{3} \: + \: { {}^{3} }^{4} log \: {3}^{3} } = x \\ \\ \sqrt{ \frac{3}{4} + \frac{3}{4} } = x \\ \\ \sqrt{ \frac{6}{4} } = x \\ \frac{ \sqrt{6} }{2} = x[/tex]
Jika k = x
Maka 2k
= 2 × √6/2
= √6