--
[tex] \\ \\ \\ \\ \\ [/tex]
[tex]\rm\int_0^{\pi}sin(x)dx [/tex]
= [tex] \int sin(x) = dx[/tex]
= [tex] - cos(x)[/tex]
= [tex] - cos (\pi)+ cos(0)[/tex]
= [tex]2[/tex] B.
[tex] \\ \\ [/tex]
Integral
∫d(x) = x + C
∫sin x dx [π 0]
= ∫d(-cos x)
= - cos x
= - (cos π - cos 0)
= - (-1 - 1)
= 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
--
[tex] \\ \\ \\ \\ \\ [/tex]
[tex]\rm\int_0^{\pi}sin(x)dx [/tex]
= [tex] \int sin(x) = dx[/tex]
= [tex] - cos(x)[/tex]
= [tex] - cos (\pi)+ cos(0)[/tex]
= [tex]2[/tex] B.
[tex] \\ \\ [/tex]
[tex] \\ \\ \\ \\ \\ [/tex]
--
Verified answer
Integral
∫d(x) = x + C
∫sin x dx [π 0]
= ∫d(-cos x)
= - cos x
= - (cos π - cos 0)
= - (-1 - 1)
= 2