Respuesta:
[tex]x=\frac{\ln \left(768\right)}{\text{W}_0\left(\frac{\ln \left(768\right)}{96}\right)\cdot \:96}[/tex]
Decimal: 1.06700...
Explicación paso a paso:
[tex]x^{x\cdot \:48}=16\sqrt{3}\\\\\left(\frac{\ln \left(768\right)}{u\cdot \:96}\right)e^{-u}=1\\\\u=\text{W}_0\left(\frac{\ln \left(768\right)}{96}\right)\\\\x=\frac{\ln \left(768\right)}{\text{W}_0\left(\frac{\ln \left(768\right)}{96}\right)\cdot \:96}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
[tex]x=\frac{\ln \left(768\right)}{\text{W}_0\left(\frac{\ln \left(768\right)}{96}\right)\cdot \:96}[/tex]
Decimal: 1.06700...
Explicación paso a paso:
[tex]x^{x\cdot \:48}=16\sqrt{3}\\\\\left(\frac{\ln \left(768\right)}{u\cdot \:96}\right)e^{-u}=1\\\\u=\text{W}_0\left(\frac{\ln \left(768\right)}{96}\right)\\\\x=\frac{\ln \left(768\right)}{\text{W}_0\left(\frac{\ln \left(768\right)}{96}\right)\cdot \:96}[/tex]