Odpowiedź:
a ) = [tex]log_4 100 + log_4 ( 4\sqrt{5} )^2 - log_4 5^3 = log_4 100 + log_480 - log_4 125 =[/tex]
[tex]= log_4\frac{100*80}{125} = log_4 64 = 3[/tex] [tex]bo[/tex] [tex]4^3 = 64[/tex]
------------------------------------
b ) = [tex]log_{\sqrt{6}} ( 6^{2/3}) = \frac{2}{3} *log_{\sqrt{6} } 6 = \frac{2}{3} *2 = \frac{4}{3}[/tex]
------------------------------------------------------------------
c ) = [tex]log_{\sqrt[3]{3} } \frac{3^{4/5}}{3} = log_{3^{1/3}} 3^{-1/5} = 3*(- \frac{1}{5} )log_3 3 = - \frac{3}{5} *1 = - 0,6[/tex]
=====================================================
Szczegółowe wyjaśnienie:
[tex]log_a x = b[/tex] ⇔ [tex]a^b = x[/tex]
[tex]log_a x + log_a y = log_a ( x*y )[/tex]
[tex]log_a x - log_a y = log_a \frac{x}{y}[/tex]
[tex]log+a x^n = n*log_a x[/tex]
[tex]log_{a^\alpha } x = \frac{1}{\alpha } *log_a x[/tex]
=========================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a ) = [tex]log_4 100 + log_4 ( 4\sqrt{5} )^2 - log_4 5^3 = log_4 100 + log_480 - log_4 125 =[/tex]
[tex]= log_4\frac{100*80}{125} = log_4 64 = 3[/tex] [tex]bo[/tex] [tex]4^3 = 64[/tex]
------------------------------------
b ) = [tex]log_{\sqrt{6}} ( 6^{2/3}) = \frac{2}{3} *log_{\sqrt{6} } 6 = \frac{2}{3} *2 = \frac{4}{3}[/tex]
------------------------------------------------------------------
c ) = [tex]log_{\sqrt[3]{3} } \frac{3^{4/5}}{3} = log_{3^{1/3}} 3^{-1/5} = 3*(- \frac{1}{5} )log_3 3 = - \frac{3}{5} *1 = - 0,6[/tex]
=====================================================
Szczegółowe wyjaśnienie:
[tex]log_a x = b[/tex] ⇔ [tex]a^b = x[/tex]
[tex]log_a x + log_a y = log_a ( x*y )[/tex]
[tex]log_a x - log_a y = log_a \frac{x}{y}[/tex]
[tex]log+a x^n = n*log_a x[/tex]
[tex]log_{a^\alpha } x = \frac{1}{\alpha } *log_a x[/tex]
=========================