Penjelasan dengan langkah-langkah:
limit fungsi
diket :
a + b = ....?
f(0) = -1
√b - √a = -1
.
[tex]\begin{aligned}\sf\displaystyle \lim_{x\to\infty}f(x)&\sf=\frac{5}{2} \\\sf \frac{a - b}{\cancel{2 \sqrt{1}} } &\sf = \frac{5}{\cancel2} \\ \sf {a - b} &\sf = 5\end{aligned}[/tex]
Cari nilai b
b = -5 + a
, sehingga
[tex]\begin{aligned}\sf \sqrt{ - 5 + a} - \sqrt{a} &\sf = - 1 \\ \sf (\sqrt{ - 5 + a} {)}^{2} &\sf = ( \sqrt{a} - 1) ^{2} \\ \sf - 5 + \cancel a&\sf = \cancel a - 2 \sqrt{a} + 1 \\ \sf2 \sqrt{a} &\sf = 5 + 1 \\ \sf2 \sqrt{a} &\sf = 6 \\ \sf\sqrt{a} &\sf = 3 \\ \sf \: a&\sf = 9\cdots \: diperoleh \: nilai \: a\end{aligned}[/tex]
untuk nilai b
b = -5 + 9
b = 4
Maka nilai a + b adalah 9 + 4 = 13
LIMIT TAK HINGGA
f(x) = √(x² + ax + b) - √(x² + bx + a)
lim x⇢∞ √(x² + ax + b) - √(x² + bx + a) = 5/2
(a - b)/2 = 5/2
a - b = 5 ... (1)
(√a - √b)(√a + √b) = 5
√a + √b = 5
√a - √b = 1
2√a = 6
a = 9
√b = 5 - √a
√b = 2
a + b = 9 + 4 = 13
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
limit fungsi
diket :
a + b = ....?
f(0) = -1
√b - √a = -1
.
[tex]\begin{aligned}\sf\displaystyle \lim_{x\to\infty}f(x)&\sf=\frac{5}{2} \\\sf \frac{a - b}{\cancel{2 \sqrt{1}} } &\sf = \frac{5}{\cancel2} \\ \sf {a - b} &\sf = 5\end{aligned}[/tex]
Cari nilai b
b = -5 + a
, sehingga
[tex]\begin{aligned}\sf \sqrt{ - 5 + a} - \sqrt{a} &\sf = - 1 \\ \sf (\sqrt{ - 5 + a} {)}^{2} &\sf = ( \sqrt{a} - 1) ^{2} \\ \sf - 5 + \cancel a&\sf = \cancel a - 2 \sqrt{a} + 1 \\ \sf2 \sqrt{a} &\sf = 5 + 1 \\ \sf2 \sqrt{a} &\sf = 6 \\ \sf\sqrt{a} &\sf = 3 \\ \sf \: a&\sf = 9\cdots \: diperoleh \: nilai \: a\end{aligned}[/tex]
untuk nilai b
b = -5 + a
b = -5 + 9
b = 4
Maka nilai a + b adalah 9 + 4 = 13
Verified answer
LIMIT TAK HINGGA
f(x) = √(x² + ax + b) - √(x² + bx + a)
lim x⇢∞ √(x² + ax + b) - √(x² + bx + a) = 5/2
(a - b)/2 = 5/2
a - b = 5 ... (1)
f(0) = -1
√b - √a = -1
(√a - √b)(√a + √b) = 5
√a + √b = 5
√a + √b = 5
√a - √b = 1
2√a = 6
a = 9
√b = 5 - √a
√b = 2
b = 4
a + b = 9 + 4 = 13