Penjelasan dengan langkah-langkah:
Identitas trigonometri
[tex]\begin{aligned} \sf \frac{ \cot(x) }{ \cot(x) - \cot(3x) } + \frac{ \tan(x) }{ \tan(x) - \tan(3x) } & = \sf \frac{ \cot(x) }{ \frac{1}{ \tan(x) } - \frac{1}{ \tan(3x) } } + \frac{ \tan(x) }{ \tan(x) - \tan(3x) } \\ & = \sf \frac{ \cot(x) }{ \frac{ \tan(3x) - \tan(x) }{ \tan(x) \tan(3x) } } + \frac{ \tan(x) }{ - 1( \tan(3x) - \tan(x) )} \\ & = \sf \frac{ \frac{1}{ \cancel{\tan(x)} } }{\frac{ \tan(3x) - \tan(x) }{ \cancel{\tan(x)} \tan(3x) }} - \frac{ \tan(x) }{ \tan(3x) - \tan(x) } \\& = \sf \frac{ \tan(3x) }{ \tan(3x) - \tan(x) } - \frac{ \tan(x) }{ \tan(3x) - \tan(x) } \\ & = \sf \frac{ \tan(3x) - \tan(x) }{ \tan(3x) - \tan(x) } \\& =\boxed{ 1} \sf \end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Penjelasan dengan langkah-langkah:
Identitas trigonometri
[tex]\begin{aligned} \sf \frac{ \cot(x) }{ \cot(x) - \cot(3x) } + \frac{ \tan(x) }{ \tan(x) - \tan(3x) } & = \sf \frac{ \cot(x) }{ \frac{1}{ \tan(x) } - \frac{1}{ \tan(3x) } } + \frac{ \tan(x) }{ \tan(x) - \tan(3x) } \\ & = \sf \frac{ \cot(x) }{ \frac{ \tan(3x) - \tan(x) }{ \tan(x) \tan(3x) } } + \frac{ \tan(x) }{ - 1( \tan(3x) - \tan(x) )} \\ & = \sf \frac{ \frac{1}{ \cancel{\tan(x)} } }{\frac{ \tan(3x) - \tan(x) }{ \cancel{\tan(x)} \tan(3x) }} - \frac{ \tan(x) }{ \tan(3x) - \tan(x) } \\& = \sf \frac{ \tan(3x) }{ \tan(3x) - \tan(x) } - \frac{ \tan(x) }{ \tan(3x) - \tan(x) } \\ & = \sf \frac{ \tan(3x) - \tan(x) }{ \tan(3x) - \tan(x) } \\& =\boxed{ 1} \sf \end{aligned}[/tex]