Jawaban:
[tex] \sf 2(x + \sqrt{5} )(x - \sqrt{5} )[/tex]
[tex] \sf = (2x + 2 \sqrt{5} )(x - \sqrt{5} )[/tex]
[tex] \sf = {2x}^{2} - 2 \sqrt{5} x + 2 \sqrt{5} x - 2 \sqrt{25} [/tex]
[tex] \sf = {2x}^{2} - 2 \sqrt{5} x + 2 \sqrt{5} x - 2 \sqrt{ {5}^{2} } [/tex]
[tex] \sf = {2x}^{2} - 2 \sqrt{5} x + 2 \sqrt{5} x - 2(5)[/tex]
[tex] \sf = 2 {x}^{2} - 2 \sqrt{5} x + 2 \sqrt{5} x - 10[/tex]
[tex] \sf = 2 {x}^{2} - 10[/tex]
[tex] \sf 2 {x}^{2} - 10 = 0 \\ [/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \sf 2 {x}^{2} = 10[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \sf {x}^{2} = \frac{10}{2} [/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \sf {x}^{2} = 5[/tex]
[tex] \: \: \sf x = ± \sqrt{5} \\ \sf \red{x _{1} = \red{ \sqrt{5} }} \: dan \: \sf \red{x_{2} = \red{ - \sqrt{5}} }[/tex]
'조슈아' (Svt)
Penjelasan dengan langkah-langkah:
Persamaan kuadrat
Cara 1
2(x + √5)(x - √5) = 0 .......... ( x1 < x2 )
2 ( x² - 5 ) = 0
2x² - 10 = 0
2x² - 10 + 10 = 0 + 10
2x² = 10
x² = 10/2
x = ±√5
x1 = -√5 , x2 = √5
Cara 2
2(x + √5)(x - √5) = 0 .......... ( kedua ruas bagi 2)
(x + √5)(x - √5) = 0
.
diperoleh x1
x + √5 = 0
x = -√5
dan x2
x - √5 = 0
x = √5
Cara 3
2(x + √5)(x - √5) = 0
2(x² - 5) = 0 ....... ( kedua ruas bagi 2)
x² - 5 = 0
p = 0 (koefisien x adalah 0 karena tidak ada)
q = -5 (konstata)
.sehingga
x = -½p ± √((½p)²-(q))
x = -½(0) ± √(0-(-5))
x1 = -√5 dan x2 = √5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Jawaban:
Penyelesaian :
[tex] \sf 2(x + \sqrt{5} )(x - \sqrt{5} )[/tex]
[tex] \sf = (2x + 2 \sqrt{5} )(x - \sqrt{5} )[/tex]
[tex] \sf = {2x}^{2} - 2 \sqrt{5} x + 2 \sqrt{5} x - 2 \sqrt{25} [/tex]
[tex] \sf = {2x}^{2} - 2 \sqrt{5} x + 2 \sqrt{5} x - 2 \sqrt{ {5}^{2} } [/tex]
[tex] \sf = {2x}^{2} - 2 \sqrt{5} x + 2 \sqrt{5} x - 2(5)[/tex]
[tex] \sf = 2 {x}^{2} - 2 \sqrt{5} x + 2 \sqrt{5} x - 10[/tex]
[tex] \sf = 2 {x}^{2} - 10[/tex]
[tex] \sf 2 {x}^{2} - 10 = 0 \\ [/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \sf 2 {x}^{2} = 10[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \sf {x}^{2} = \frac{10}{2} [/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \sf {x}^{2} = 5[/tex]
[tex] \: \: \sf x = ± \sqrt{5} \\ \sf \red{x _{1} = \red{ \sqrt{5} }} \: dan \: \sf \red{x_{2} = \red{ - \sqrt{5}} }[/tex]
'조슈아' (Svt)
Penjelasan dengan langkah-langkah:
Persamaan kuadrat
Cara 1
2(x + √5)(x - √5) = 0 .......... ( x1 < x2 )
2 ( x² - 5 ) = 0
2x² - 10 = 0
2x² - 10 + 10 = 0 + 10
2x² = 10
x² = 10/2
x = ±√5
x1 = -√5 , x2 = √5
Cara 2
2(x + √5)(x - √5) = 0 .......... ( kedua ruas bagi 2)
(x + √5)(x - √5) = 0
.
diperoleh x1
x + √5 = 0
x = -√5
dan x2
x - √5 = 0
x = √5
Cara 3
2(x + √5)(x - √5) = 0
2(x² - 5) = 0 ....... ( kedua ruas bagi 2)
x² - 5 = 0
p = 0 (koefisien x adalah 0 karena tidak ada)
q = -5 (konstata)
.sehingga
x = -½p ± √((½p)²-(q))
x = -½(0) ± √(0-(-5))
x = ±√5
x1 = -√5 dan x2 = √5