Penjelasan dengan langkah-langkah:
Manipulasi Aljabar
[tex]\sf \: x - \frac{4}{ \sqrt{x} } = 17[/tex]
[tex]\sf \: x - 4 \sqrt{x} = \cdots[/tex]
[tex]\begin{aligned}\sf x-\frac{4}{\sqrt{x}}&=\sf 17\\\sf x-\frac{4}{\sqrt{x}}&=\sf16+1 \\\sf \: x - 16& =\sf 1 + \frac{4}{ \sqrt{x} } \\\sf\cancel{( \sqrt{x} +4 )}( \sqrt{x} - 4 )& = \sf \frac{ \cancel{\sqrt{x} + 4 {}}^{ \: \: \: 1} }{ \sqrt{x} } \\ \sf \: \sqrt{x} - 4& = \sf \frac{1}{ \sqrt{x} } \\\sf \sqrt{x}( \sqrt{x} - 4) & = \sf 1 \\\sf \: x - 4 \sqrt{x} & = \boxed{\sf 1 }\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Penjelasan dengan langkah-langkah:
Manipulasi Aljabar
[tex]\sf \: x - \frac{4}{ \sqrt{x} } = 17[/tex]
[tex]\sf \: x - 4 \sqrt{x} = \cdots[/tex]
[tex]\begin{aligned}\sf x-\frac{4}{\sqrt{x}}&=\sf 17\\\sf x-\frac{4}{\sqrt{x}}&=\sf16+1 \\\sf \: x - 16& =\sf 1 + \frac{4}{ \sqrt{x} } \\\sf\cancel{( \sqrt{x} +4 )}( \sqrt{x} - 4 )& = \sf \frac{ \cancel{\sqrt{x} + 4 {}}^{ \: \: \: 1} }{ \sqrt{x} } \\ \sf \: \sqrt{x} - 4& = \sf \frac{1}{ \sqrt{x} } \\\sf \sqrt{x}( \sqrt{x} - 4) & = \sf 1 \\\sf \: x - 4 \sqrt{x} & = \boxed{\sf 1 }\end{aligned}[/tex]