Jawaban:
[tex] \frac{1}{3} {x}^{3} + \frac{ 1 }{2} {x}^{2} + x + C[/tex]
Penjelasan dengan langkah-langkah:
[tex]\displaystyle \int \frac{x^4+x^2+1}{x^2-x+1}~dx[/tex]
[tex] \displaystyle = \int \frac{( {x}^{2} + x + 1 )( {x}^{2} - x + 1)}{x^2-x+1}~dx[/tex]
[tex] = \displaystyle \int \frac{( {x}^{2} + x + 1 ) \cancel{( {x}^{2} - x + 1)}}{ \cancel{(x^2-x+1)}}~dx[/tex]
[tex] = \displaystyle \int {x}^{2} + x + 1 \: ~dx[/tex]
[tex] = ( {\frac{1}{2 + 1} x}^{2 + 1}) + ( \frac{1}{1 + 1} {x}^{1 + 1}) + (x) + C[/tex]
[tex] = \frac{1}{3} {x}^{3} + \frac{ 1 }{2} {x}^{2} + x + C[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Jawaban:
[tex] \frac{1}{3} {x}^{3} + \frac{ 1 }{2} {x}^{2} + x + C[/tex]
Penjelasan dengan langkah-langkah:
[tex]\displaystyle \int \frac{x^4+x^2+1}{x^2-x+1}~dx[/tex]
[tex] \displaystyle = \int \frac{( {x}^{2} + x + 1 )( {x}^{2} - x + 1)}{x^2-x+1}~dx[/tex]
[tex] = \displaystyle \int \frac{( {x}^{2} + x + 1 ) \cancel{( {x}^{2} - x + 1)}}{ \cancel{(x^2-x+1)}}~dx[/tex]
[tex] = \displaystyle \int {x}^{2} + x + 1 \: ~dx[/tex]
[tex] = ( {\frac{1}{2 + 1} x}^{2 + 1}) + ( \frac{1}{1 + 1} {x}^{1 + 1}) + (x) + C[/tex]
[tex] = \frac{1}{3} {x}^{3} + \frac{ 1 }{2} {x}^{2} + x + C[/tex]