[tex]\huge\begin{array}{ccc}\dfrac{0,25\cdot\sqrt[3]8\cdot2^{\frac{1}{2}}}{\sqrt2\cdot2^{-2}}=2\end{array}[/tex]
Definicja potęgi o wykładniku
Twierdzenia:
[tex]a^n\cdot a^m=a^{n+m}\\\\\dfrac{a^n}{a^m}=a^{n-m}[/tex]
[tex]\dfrac{0,25\cdot\sqrt[3]8\cdot2^{\frac{1}{2}}}{\sqrt2\cdot2^{-2}}=\dfrac{\frac{1}{4\!\!\!\!\diagup_2}\cdot2\!\!\!\!\diagup^1\cdot2^{\frac{1}{2}}\!\!\!\!\!\!\!\diagup}{2^{\frac{1}{2}\!\!\!\!\!\!\diagup}\cdot2^{-2}}=\dfrac{\frac{1}{2}}{2^{-2}}=\dfrac{2^{-1}}{2^{-2}}=2^{-1-(-2)}=2^{-1+2}=2^1=2[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
[tex]\huge\begin{array}{ccc}\dfrac{0,25\cdot\sqrt[3]8\cdot2^{\frac{1}{2}}}{\sqrt2\cdot2^{-2}}=2\end{array}[/tex]
Działania na potęgach.
Definicja potęgi o wykładniku
[tex]a^2=a\cdot a\\a^3=a\cdot a\cdot a\\\vdots\\a^n=\underbrace{a\cdot a\cdot...\cdot a}_{n}[/tex]
ponadto [tex]a^1=a\ \wedge\ a^0=1[/tex]
[tex]a^{-n}=\left(\dfrac{1}{a}\right)^n=\dfrac{1}{a^n}\qquad \text{dla}\ a\neq0}[/tex]
[tex]a^{\frac{1}{n}}=\sqrt[n]{a}[/tex]
Twierdzenia:
[tex]a^n\cdot a^m=a^{n+m}\\\\\dfrac{a^n}{a^m}=a^{n-m}[/tex]
ROZWIĄZANIE:
[tex]\dfrac{0,25\cdot\sqrt[3]8\cdot2^{\frac{1}{2}}}{\sqrt2\cdot2^{-2}}=\dfrac{\frac{1}{4\!\!\!\!\diagup_2}\cdot2\!\!\!\!\diagup^1\cdot2^{\frac{1}{2}}\!\!\!\!\!\!\!\diagup}{2^{\frac{1}{2}\!\!\!\!\!\!\diagup}\cdot2^{-2}}=\dfrac{\frac{1}{2}}{2^{-2}}=\dfrac{2^{-1}}{2^{-2}}=2^{-1-(-2)}=2^{-1+2}=2^1=2[/tex]