Wyznaczamy kwadrat funkcji cosinus z Jedynki Trygonometrycznej i podstawiamy do równania. [tex]\underbrace{\sin^2\alpha+\cos^2\alpha=1 \Rightarrow \underline{\cos^2\alpha=1-\sin^2\alpha}}\\\\\begin{array}{lll}\dfrac{\sin^2\alpha}{1-\sin^2\alpha}=\dfrac{1}{18}\\\\18\sin^2\alpha=1-\sin^2\alpha&|&+\sin^2\alpha\\\\19\sin^2\alpha=1&|&:19\\\\\sin^2\alpha=\dfrac1{19}&|&\sqrt{}\\\\\sin\alpha=\sqrt{\dfrac1{19}}\\\\\sin\alpha=\dfrac{1}{\sqrt{19}} \vee \sin\alpha=-\dfrac1{\sqrt{19}}\\\\\boxed{\sin\alpha=\dfrac{\sqrt{19}}{19} \vee \sin\alpha=-\dfrac{\sqrt{19}}{19}}\end{array}[/tex]
Wyznaczamy wartość funkcji cosinus w I i III ćwiartce układu współrzędnych: [tex]\begin{array}{lll}\cos^2\alpha=1-\dfrac1{19}\\\\\cos^2\alpha=\dfrac{18}{19}&|&\sqrt{}\\\\\cos\alpha=\sqrt{\dfrac{18}{19}}\\\\\cos\alpha=\dfrac{3\sqrt2}{\sqrt{19}} \vee \cos\alpha=-\dfrac{3\sqrt2}{19}\\\\\boxed{\bold{\cos\alpha=\dfrac{3\sqrt{38}}{19} \vee \cos\alpha=-\dfrac{3\sqrt{38}}{19}}}\end{array}[/tex]
Trygonometria
Jedynka Trygonometryczna
[tex]\huge\boxed{\sin^2\alpha+\cos^2\alpha=1}[/tex]
Wzory na tangens i cotangens
[tex]\huge\boxed{\begin{array}{lll}\text{tg}\alpha=\dfrac{\sin\alpha}{\cos\alpha}\\\\\text{ctg}\alpha=\dfrac{\cos\alpha}{\sin\alpha}\\\\\text{tg}\alpha\cdot \text{ctg}\alpha=1\end{array}}[/tex]
Wartości funkcji trygonometrycznych w ćwiartkach układu współrzędnych
[tex]\huge\begin{array}{|l|c|c|c|c|}\cline{1-5}&\;I\;&II&III&IV\\\cline{1-5}\sin\alpha&+&+&-&-\\\cline{1-5}\cos\alpha&+&-&-&+\\\cline{1-5}\text{tg}\alpha&+&-&+&-\\\cline{1-5}\text{ctg}\alpha&+&-&+&-\\\cline{1-5}\end{array}[/tex]
Rozwiązanie:
a)
Dana jest funkcja tangens kąta α:
[tex]\text{tg}\alpha=\dfrac{\sqrt2}6[/tex]
Wartość ta jest dodatnia, zatem kąt α leży w I lub III ćwiartce układu współrzędnych.
[tex]\alpha \in (0^\circ; 90^\circ) \text{ lub } \alpha\in(180^\circ; 270^\circ)[/tex]
Wyznaczmy wartość cotangensa tego kąta:
[tex]\begin{array}{lll}\dfrac{\sqrt2}6\cdot \text{ctg}\alpha=1&|&\cdot \dfrac6{\sqrt2}\\\\\text{ctg}\alpha=\dfrac6{\sqrt2}\cdot \dfrac{\sqrt2}{\sqrt2}\\\\\text{ctg}\alpha=\dfrac{6\!\!\!\!\diagup^3\sqrt2}{2\!\!\!\!\diagup_1}\\\\\boxed{\text{ctg}\alpha=3\sqrt2}\end{array}[/tex]
Dokonując odpowiednich przekształceń, obliczamy wartości funkcji sinus i cosinus:
[tex]\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{\sqrt2}6[/tex]
[tex]\begin{array}{lll}\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{\sqrt2}6&|&^2\\\\\dfrac{\sin^2\alpha}{\cos^2\alpha}=\dfrac{2\!\!\!\!\diagup^1}{36\!\!\!\!\!\diagup_{18}}\\\\\dfrac{\sin^2\alpha}{\cos^2\alpha}=\dfrac1{18}\end{array}[/tex]
[tex]\underbrace{\sin^2\alpha+\cos^2\alpha=1 \Rightarrow \underline{\cos^2\alpha=1-\sin^2\alpha}}\\\\\begin{array}{lll}\dfrac{\sin^2\alpha}{1-\sin^2\alpha}=\dfrac{1}{18}\\\\18\sin^2\alpha=1-\sin^2\alpha&|&+\sin^2\alpha\\\\19\sin^2\alpha=1&|&:19\\\\\sin^2\alpha=\dfrac1{19}&|&\sqrt{}\\\\\sin\alpha=\sqrt{\dfrac1{19}}\\\\\sin\alpha=\dfrac{1}{\sqrt{19}} \vee \sin\alpha=-\dfrac1{\sqrt{19}}\\\\\boxed{\sin\alpha=\dfrac{\sqrt{19}}{19} \vee \sin\alpha=-\dfrac{\sqrt{19}}{19}}\end{array}[/tex]
[tex]\begin{array}{lll}\cos^2\alpha=1-\dfrac1{19}\\\\\cos^2\alpha=\dfrac{18}{19}&|&\sqrt{}\\\\\cos\alpha=\sqrt{\dfrac{18}{19}}\\\\\cos\alpha=\dfrac{3\sqrt2}{\sqrt{19}} \vee \cos\alpha=-\dfrac{3\sqrt2}{19}\\\\\boxed{\bold{\cos\alpha=\dfrac{3\sqrt{38}}{19} \vee \cos\alpha=-\dfrac{3\sqrt{38}}{19}}}\end{array}[/tex]
Zatem:
[tex]\text{Dla } \alpha\in(0^\circ; 90^\circ) \Rightarrow \left\{\begin{array}{lll}\sin\alpha=\dfrac{\sqrt{19}}{19},&\;&\cos\alpha=\dfrac{3\sqrt{38}}{19}\\\\\text{tg}\alpha=\dfrac{\sqrt2}6,&&\text{ctg}\alpha=3\sqrt2\end{array}\right.[/tex]
[tex]\text{Dla } \alpha\in(180^\circ; 270^\circ) \Rightarrow \left\{\begin{array}{lll}\sin\alpha=-\dfrac{\sqrt{19}}{19},&\;&\cos\alpha=-\dfrac{3\sqrt{38}}{19}\\\\\text{tg}\alpha=\dfrac{\sqrt2}6,&&\text{ctg}\alpha=3\sqrt2\end{array}\right.[/tex]
W ten sam sposób rozwiążemy kolejny przykład.
c)
[tex]\begin{array}{lll}\text{tg}\alpha=\dfrac{15}8\\\\\dfrac{15}8\cdot \text{ctg}\apha=1&|&\cdot\dfrac8{15}\\\\\boxed{\bold{\text{ctg}\alpha=\dfrac8{15}}}\end{array}[/tex]
Wyznaczamy wartość funkcji sinus:
[tex]\begin{array}{lll}\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{15}8&|&^2\\\\\dfrac{\sin^2\alpha}{\cos^2\alpha}=\dfrac{225}{64}\\\\\dfrac{\sin^2\alpha}{1-\sin^2\alpha}=\dfrac{225}{64}\\\\64\sin^2\alpha=225(1-\sin^2\alpha)\\\\64\sin^2\alpha=225-225\sin^2\alpha&|&+225\sin^2\alpha\\\\289\sin^2\alpha=225&|&:289\\\\\sin^2\alpha=\dfrac{225}{289}&|&\sqrt{}\\\\\sin\alpha=\sqrt{\dfrac{225}{289}}\\\\\boxed{\bold{\sin\alpha=\dfrac{15}{17} \vee \sin\alpha=-\dfrac{15}{17}}}\end{array}[/tex]
Wyznaczamy wartość funkcji cosinus:
[tex]\begin{array}{lll}\cos^2\alpha=1-\dfrac{225}{289}\\\\\cos^2\alpha=\dfrac{64}{289}&|&\sqrt{}\\\\\cos\alpha=\sqrt{\dfrac{64}{289}}\\\\\boxed{\bold{\cos\alpha=\dfrac8{17}\vee\cos\alpha=-\dfrac8{17}}}\end{array}[/tex]
Zatem:
[tex]\text{Dla } \alpha\in(0^\circ; 90^\circ) \Rightarrow \left\{\begin{array}{lll}\sin\alpha=\dfrac{15}{17},&\;&\cos\alpha=\dfrac{8}{17}\\\\\text{tg}\alpha=\dfrac{15}8,&&\text{ctg}\alpha=\dfrac8{15}\end{array}\right.[/tex]
[tex]\text{Dla } \alpha\in(180^\circ; 270^\circ) \Rightarrow \left\{\begin{array}{lll}\sin\alpha=-\dfrac{15}{17},&\;&\cos\alpha=-\dfrac{8}{17}\\\\\text{tg}\alpha=\dfrac{15}8,&&\text{ctg}\alpha=\dfrac8{15}\end{array}\right.[/tex]