Odpowiedź:
[tex]a_n = ( \frac{n^2 + 3}{n^2 + 1})^5* [ \frac{ (1 + \frac{3}{n^2})^{n^2} }{( 1 + \frac{1}{n^2})^{n^2} } ]^2[/tex]
więc
[tex]\lim_{n \to \infty} a_n = 1^5*[ \frac{e^3}{e} ]^2 = ( e^2)^2 = e^4[/tex]
===============================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]a_n = ( \frac{n^2 + 3}{n^2 + 1})^5* [ \frac{ (1 + \frac{3}{n^2})^{n^2} }{( 1 + \frac{1}{n^2})^{n^2} } ]^2[/tex]
więc
[tex]\lim_{n \to \infty} a_n = 1^5*[ \frac{e^3}{e} ]^2 = ( e^2)^2 = e^4[/tex]
===============================
Szczegółowe wyjaśnienie: