Odpowiedź:
Wyjaśnienie:
x = arcsin(√t³)
x = arcsin[(t)^3/2]
x'(t) = [arcsin(v)]'*[v(t)]'
x'(t) = [tex]\frac{1}{\sqrt{1-t^{2} } } *\frac{3}{2} *t^{\frac{1}{2} }[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Wyjaśnienie:
x = arcsin(√t³)
x = arcsin[(t)^3/2]
x'(t) = [arcsin(v)]'*[v(t)]'
x'(t) = [tex]\frac{1}{\sqrt{1-t^{2} } } *\frac{3}{2} *t^{\frac{1}{2} }[/tex]