[tex]\displaystyle \frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+{\dots}=\boxed{\bf1}[/tex]
Deret Tak Hingga
Kita akan mencari jumlah dari deret tak hingga:
[tex]\displaystyle \frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+{\dots}[/tex]
Jika diuji, deret tersebut konvergen, sehingga jumlah tak hingganya berupa bilangan (bukan ∞ atau –∞).
Jika banyak sukunya terbatas sampai [tex]k[/tex] suku, maka jumlahnya adalah:
[tex]\begin{aligned}\sum_{n=1}^{k}\frac{1}{n(n+1)}&=\sum_{n=1}^{k}\left(\frac{1}{n}-\frac{1}{n+1}\right)\\&=\sum_{n=1}^{k}\frac{1}{n}\:-\:\sum_{n=1}^{k}\frac{1}{n+1}\\&=\sum_{n=1}^{k}\frac{1}{n}\:-\:\sum_{n=2}^{k+1}\frac{1}{n}\\&=1-\frac{1}{k+1}\\\sum_{n=1}^{k}\frac{1}{n(n+1)}&=\frac{k}{k+1}\end{aligned}[/tex]
Oleh karena itu:
[tex]\begin{aligned}&\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+{\dots}\\&{=\ }\sum_{n=1}^{\infty}\frac{1}{n(n+1)}\\&{=\ }\lim_{k\to\infty}\left(\sum_{n=1}^{k}\frac{1}{n(n+1)}\right)\\&{=\ }\lim_{k\to\infty}\frac{k}{k+1}\\&{=\ }\lim_{k\to\infty}\frac{1}{1+\frac{1}{k}}\\&{=\ }\frac{\lim\limits_{k\to\infty}1}{\lim\limits_{k\to\infty}\left(1+\frac{1}{k}\right)}\\&{=\ }\frac{1}{1}=\boxed{\,\bf1\,}\end{aligned}[/tex][tex]\blacksquare[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
[tex]\displaystyle \frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+{\dots}=\boxed{\bf1}[/tex]
Penjelasan dengan langkah-langkah:
Deret Tak Hingga
Kita akan mencari jumlah dari deret tak hingga:
[tex]\displaystyle \frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+{\dots}[/tex]
Jika diuji, deret tersebut konvergen, sehingga jumlah tak hingganya berupa bilangan (bukan ∞ atau –∞).
Jika banyak sukunya terbatas sampai [tex]k[/tex] suku, maka jumlahnya adalah:
[tex]\begin{aligned}\sum_{n=1}^{k}\frac{1}{n(n+1)}&=\sum_{n=1}^{k}\left(\frac{1}{n}-\frac{1}{n+1}\right)\\&=\sum_{n=1}^{k}\frac{1}{n}\:-\:\sum_{n=1}^{k}\frac{1}{n+1}\\&=\sum_{n=1}^{k}\frac{1}{n}\:-\:\sum_{n=2}^{k+1}\frac{1}{n}\\&=1-\frac{1}{k+1}\\\sum_{n=1}^{k}\frac{1}{n(n+1)}&=\frac{k}{k+1}\end{aligned}[/tex]
Oleh karena itu:
[tex]\begin{aligned}&\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+{\dots}\\&{=\ }\sum_{n=1}^{\infty}\frac{1}{n(n+1)}\\&{=\ }\lim_{k\to\infty}\left(\sum_{n=1}^{k}\frac{1}{n(n+1)}\right)\\&{=\ }\lim_{k\to\infty}\frac{k}{k+1}\\&{=\ }\lim_{k\to\infty}\frac{1}{1+\frac{1}{k}}\\&{=\ }\frac{\lim\limits_{k\to\infty}1}{\lim\limits_{k\to\infty}\left(1+\frac{1}{k}\right)}\\&{=\ }\frac{1}{1}=\boxed{\,\bf1\,}\end{aligned}[/tex]
[tex]\blacksquare[/tex]