[tex]\displaystyle\\|\Omega|=\binom{2n+1}{2}=\dfrac{(2n+1)!}{2!(2n-1)!}=\dfrac{2n(2n+1)}{2}=2n^2+n\\[/tex]
[tex]\displaystyle|A|=\binom{n}{2}+\binom{n+1}{2}=\dfrac{n!}{2!(n-2)!}+\dfrac{(n+1)!}{2!(n-1)!}=\dfrac{n(n-1)}{2}+\dfrac{n(n+1)}{2}=\\=\dfrac{n^2-n+n^2+n}{2}=\dfrac{2n^2}{2}=n^2[/tex]
[tex]P(A)=\dfrac{n^2}{2n^2+n} < \dfrac{10}{21}\\\\\\\dfrac{n^2}{2n^2+n} < \dfrac{10}{21}\\\\21n^2 < 10(2n^2+n)\\21n^2 < 20n^2+10n\\n^2-10n < 0\\n(n-10) < 0\\n\in(0,10)[/tex]
[tex]n\in(0,10)\wedge n\in\mathbb{N}\\\boxed{n\in\{1,2,3,4,5,6,7,8,9\}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]\displaystyle\\|\Omega|=\binom{2n+1}{2}=\dfrac{(2n+1)!}{2!(2n-1)!}=\dfrac{2n(2n+1)}{2}=2n^2+n\\[/tex]
[tex]\displaystyle|A|=\binom{n}{2}+\binom{n+1}{2}=\dfrac{n!}{2!(n-2)!}+\dfrac{(n+1)!}{2!(n-1)!}=\dfrac{n(n-1)}{2}+\dfrac{n(n+1)}{2}=\\=\dfrac{n^2-n+n^2+n}{2}=\dfrac{2n^2}{2}=n^2[/tex]
[tex]P(A)=\dfrac{n^2}{2n^2+n} < \dfrac{10}{21}\\\\\\\dfrac{n^2}{2n^2+n} < \dfrac{10}{21}\\\\21n^2 < 10(2n^2+n)\\21n^2 < 20n^2+10n\\n^2-10n < 0\\n(n-10) < 0\\n\in(0,10)[/tex]
[tex]n\in(0,10)\wedge n\in\mathbb{N}\\\boxed{n\in\{1,2,3,4,5,6,7,8,9\}}[/tex]