[tex]g'_x(x,y)=\dfrac{1}{2\sqrt{\cos^3(4xy^2)}}\cdot 3\cos^2(4xy^2)\cdot (-\sin (4xy^2))\cdot 4y^2+1=\\\\=-\dfrac{6y^2\sin(4xy^2)\cos^2(4xy^2)}{\sqrt{\cos^3(4xy^2)}}+1[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
[tex]g'_x(x,y)=\dfrac{1}{2\sqrt{\cos^3(4xy^2)}}\cdot 3\cos^2(4xy^2)\cdot (-\sin (4xy^2))\cdot 4y^2+1=\\\\=-\dfrac{6y^2\sin(4xy^2)\cos^2(4xy^2)}{\sqrt{\cos^3(4xy^2)}}+1[/tex]