a
[tex] = \sqrt[3]{9} \: . \: \sqrt[3]{3} \div {3}^{ - 2} [/tex]
[tex] = \sqrt[3]{ {3}^{2} } \: . \: \sqrt[3]{3} \div {3}^{ - 2} [/tex]
[tex] = {3}^{ \frac{2}{3} } \: . \: {3}^{ \frac{1}{3} } \div {3}^{ - 2} [/tex]
[tex] = {3}^{ \frac{2}{3} + \frac{1}{3} - ( - 2)} [/tex]
[tex] = {3}^{ \frac{3}{3} + 2} [/tex]
[tex] = {3}^{1 + 2} [/tex]
[tex] = {3}^{3} [/tex]
[tex] = 27[/tex]
_____________________________________
b
[tex] = \sqrt{ \sqrt{ \sqrt{ \sqrt{256} } } } [/tex]
[tex] = \sqrt{ \sqrt{ \sqrt{ \sqrt{ {2}^{8} } } } } [/tex]
[tex] = \sqrt{ \sqrt{ \sqrt{ {2}^{ \frac{8}{2} } } } } [/tex]
[tex] = \sqrt{ \sqrt{ {2}^{ \frac{8}{4} } } } [/tex]
[tex] = \sqrt{ {2}^{ \frac{8}{8} } } [/tex]
[tex] = \sqrt{2} [/tex]
[tex] = {2}^{ \frac{1}{2} } [/tex]
c
[tex] = \frac{a^b}{c^b}\cdot\frac{c^{-d}}{a^{-d}}[/tex]
[tex] = \frac{ {a}^{b} {c}^{ - d} }{ {a}^{ - d} {c}^{b} } [/tex]
[tex] = {a}^{b - ( - d)} {c}^{ - d - b} [/tex]
[tex] = {a}^{b + d} {c}^{ - (b + d)} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a
[tex] = \sqrt[3]{9} \: . \: \sqrt[3]{3} \div {3}^{ - 2} [/tex]
[tex] = \sqrt[3]{ {3}^{2} } \: . \: \sqrt[3]{3} \div {3}^{ - 2} [/tex]
[tex] = {3}^{ \frac{2}{3} } \: . \: {3}^{ \frac{1}{3} } \div {3}^{ - 2} [/tex]
[tex] = {3}^{ \frac{2}{3} + \frac{1}{3} - ( - 2)} [/tex]
[tex] = {3}^{ \frac{3}{3} + 2} [/tex]
[tex] = {3}^{1 + 2} [/tex]
[tex] = {3}^{3} [/tex]
[tex] = 27[/tex]
_____________________________________
b
[tex] = \sqrt{ \sqrt{ \sqrt{ \sqrt{256} } } } [/tex]
[tex] = \sqrt{ \sqrt{ \sqrt{ \sqrt{ {2}^{8} } } } } [/tex]
[tex] = \sqrt{ \sqrt{ \sqrt{ {2}^{ \frac{8}{2} } } } } [/tex]
[tex] = \sqrt{ \sqrt{ {2}^{ \frac{8}{4} } } } [/tex]
[tex] = \sqrt{ {2}^{ \frac{8}{8} } } [/tex]
[tex] = \sqrt{2} [/tex]
[tex] = {2}^{ \frac{1}{2} } [/tex]
_____________________________________
c
[tex] = \frac{a^b}{c^b}\cdot\frac{c^{-d}}{a^{-d}}[/tex]
[tex] = \frac{ {a}^{b} {c}^{ - d} }{ {a}^{ - d} {c}^{b} } [/tex]
[tex] = {a}^{b - ( - d)} {c}^{ - d - b} [/tex]
[tex] = {a}^{b + d} {c}^{ - (b + d)} [/tex]