Hasil dari [tex]\displaystyle\sf\sqrt[(2-\log\:25)]{4^{log\:8}}\:+ ^{\sqrt2}\log\left(\log\frac{1}{0,01}\right)-\frac{In(\sqrt[3]{4})In(27)}{In(3)In(\sqrt2)}\:adalah\:6[/tex]
Pelajari lebih lanjut : Materi logaritma dan logaritma natural
https://brainly.co.id/tugas/11508510
https://brainly.co.id/tugas/54063738
2 votes Thanks 2
BrainlyMGL
Saran aja, klo mau nulis basis logaritma, dikasih latex spasi biar rapi gk dikira +² , ײ
BrainlyMGL
Misal [tex] ^{2}log2+~^{2}log2=~^{2}log4 [/tex]
Jawab:
[tex]\displaystyle\sf\sqrt[(2-\log\:25)]{4^{log\:8}}\:+ ^{\sqrt2}\log\left(\log\frac{1}{0,01}\right)-\frac{In(\sqrt[3]{4})In(27)}{In(3)In(\sqrt2)}\:=\:6[/tex]
Penjelasan dengan langkah-langkah:
Logaritma
Soal :
[tex]\displaystyle\sf\sqrt[(2-\log\:25)]{4^{log\:8}}\:+ ^{\sqrt2}\log\left(\log\frac{1}{0,01}\right)-\frac{In(\sqrt[3]{4})In(27)}{In(3)In(\sqrt2)} = \cdots[/tex]
Jawab :
Langkah 1 : Sederhanakan bentuk bentuknya
[tex]=\displaystyle\sf\sqrt[(2-\log\:25)]{4^{log\:8}}\:+ ^{\sqrt2}\log\left(\log\frac{1}{0,01}\right)-\frac{In(\sqrt[3]{4})In(27)}{In(3)In(\sqrt2)}[/tex]
Langkah 2 : Hitung !
[tex]= \displaystyle\sf4^{\frac{\log 8}{2-log25}}\:+ ^{\sqrt2}\log\left(\log\:100\right)-\frac{In(2^{\frac{2}{3}})In(3^3)}{In(3)In(2^{\frac{1}{2}})}[/tex]
[tex]= \displaystyle\sf2^{2\left(\frac{\log 8}{2-log25}\right)}\:+ ^{2^{\frac{1}{2}}}\log(2)-\frac{\frac{2}{3}\times3(In(2)In(3))}{\frac{1}{2}(In(2)In(3))}[/tex]
[tex]= \displaystyle\sf2^{2\left(\frac{\log 2^3}{2-log\:5^2}\right)}\:+2\times ^2\log(2)-\frac{\frac{2}{\cancel3}\times\cancel3\cancel{(In(2)In(3))}}{\frac{1}{2}\cancel{(In(2)In(3))}}[/tex]
[tex]= \displaystyle\sf2^{2\left(\frac{3\:\log 2}{2-2\:\log 5}\right)}\:+2\times 1-\frac{2}{\frac{1}{2}}[/tex]
[tex]= \displaystyle\sf2^{\cancel2\left(\frac{3\:\log 2}{\cancel2(1-\log5)}\right)}\:+2-4[/tex]
[tex]= \displaystyle\sf2^{\left(\frac{3\:\log 2}{(\log10-\log5)}\right)}\:-2\Rightarrow(\log a-\log b=\log{\frac{a}{b}})[/tex]
[tex]= \displaystyle\sf2^{\left(\frac{3\:\log 2}{\log2}\right)}\:-2[/tex]
[tex]= \displaystyle\sf2^3\:-2[/tex]
[tex]= \displaystyle\sf8\:-2[/tex]
[tex]= 6[/tex]
Kesimpulan :
Hasil dari [tex]\displaystyle\sf\sqrt[(2-\log\:25)]{4^{log\:8}}\:+ ^{\sqrt2}\log\left(\log\frac{1}{0,01}\right)-\frac{In(\sqrt[3]{4})In(27)}{In(3)In(\sqrt2)}\:adalah\:6[/tex]
Pelajari lebih lanjut : Materi logaritma dan logaritma natural