Jawaban:
B.
Penjelasan dengan langkah-langkah:
Eksponen
lihat dalam foto
[tex]\sf \: \frac{3 {p}^{ - 2} }{ {q}^{ - 3} }\times 6 \times {2}^{ - 3}[/tex]
[tex] \sf = \frac{3 {p}^{ - 2} }{ {q}^{ - 3} } \times 6 \times \frac{1}{ {2}^{3} } [/tex]
[tex] \sf = \frac{3 \red{ {q}^{3} }}{ \red{{p}^{2}} } \times 6 \times \frac{1}{8} [/tex]
[tex] \sf = \frac{3 {q}^{3} }{ {p}^{2} } \times (6 \times \frac{1}{8} )[/tex]
[tex] \sf = \frac{3 {q}^{3} }{ {p}^{2} } \times \frac{6}{8} [/tex]
[tex] \sf = \frac{(3 {q}^{3} \: \times \: \red{6})}{( {p}^{2} \: \times \: \red{8}) } [/tex]
[tex] \sf = \frac{18 {q}^{3} }{6 {p}^{2} } [/tex]
[tex] \sf = \frac{ { (\cancel{18}}^{ \: \: \red{9}}){q}^{3} }{( { \cancel{8}}^{ \: \red{4}}) {p}^{2} } [/tex]
[tex] \sf = \red{ \frac{9 {q}^{3} }{4 {p}^{2} } }[/tex]
'비상' (Svt)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Jawaban:
B.
Penjelasan dengan langkah-langkah:
Eksponen
lihat dalam foto
Jawaban:
Penyelesaian :
[tex]\sf \: \frac{3 {p}^{ - 2} }{ {q}^{ - 3} }\times 6 \times {2}^{ - 3}[/tex]
[tex] \sf = \frac{3 {p}^{ - 2} }{ {q}^{ - 3} } \times 6 \times \frac{1}{ {2}^{3} } [/tex]
[tex] \sf = \frac{3 \red{ {q}^{3} }}{ \red{{p}^{2}} } \times 6 \times \frac{1}{8} [/tex]
[tex] \sf = \frac{3 {q}^{3} }{ {p}^{2} } \times (6 \times \frac{1}{8} )[/tex]
[tex] \sf = \frac{3 {q}^{3} }{ {p}^{2} } \times \frac{6}{8} [/tex]
[tex] \sf = \frac{(3 {q}^{3} \: \times \: \red{6})}{( {p}^{2} \: \times \: \red{8}) } [/tex]
[tex] \sf = \frac{18 {q}^{3} }{6 {p}^{2} } [/tex]
[tex] \sf = \frac{ { (\cancel{18}}^{ \: \: \red{9}}){q}^{3} }{( { \cancel{8}}^{ \: \red{4}}) {p}^{2} } [/tex]
[tex] \sf = \red{ \frac{9 {q}^{3} }{4 {p}^{2} } }[/tex]
'비상' (Svt)