[tex] = \displaystyle \int_{0}^{\frac{\pi}{2}}\sin^4 x~dx[/tex]
[tex] = \displaystyle \int_{0}^{\frac{\pi}{2}}( {sin}^{2} x) {}^{2} \: dx [/tex]
[tex]= \displaystyle \int_{0}^{\frac{\pi}{2}}( \frac{1}{2} (1 - cos(2x))) {}^{2} \: dx[/tex]
[tex]= \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{1}{4} (1 - cos(2x)) {}^{2} \: dx [/tex]
[tex] = \frac{1}{4} \displaystyle \int_{0}^{\frac{\pi}{2}}(1 - cos(2x)) {}^{2} \: dx[/tex]
[tex]= \frac{1}{4} \displaystyle \int_{0}^{\frac{\pi}{2}}1 - 2cos(2x) + cos {}^{2} x \: dx[/tex]
[tex]= \frac{1}{4} \displaystyle \int_{0}^{\frac{\pi}{2}}1 - 2cos(2x) + \frac{1}{2} (1 + cos(4x)) \: dx \\ [/tex]
[tex]= \frac{1}{4} \displaystyle \int_{0}^{\frac{\pi}{2}}1 - 2cos(2x) + \frac{1}{2} + \frac{1}{2} cos(4x) \: dx \\ [/tex]
[tex]= \frac{1}{4} \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{3}{2} - 2cos(2x) + \frac{1}{2} cos(4x) \: dx \\ [/tex]
[tex] = \frac{1}{4} ( \frac{3}{2} x - sin(2x) + \frac{1}{8} sin(4x))_{0}^{ \frac{\pi}{2} } [/tex]
[tex] = \frac{1}{4} (( \frac{3}{2} ( \frac{\pi}{2} ) - sin(2( \frac{\pi}{2} )) + \frac{1}{8} sin(4( \frac{\pi}{2} ))) - ( \frac{3}{2} (0) - sin(2(0)) + \frac{1}{8} sin(4(0)))) \\ [/tex]
[tex] = \frac{1}{4} (( \frac{3}{4} \pi - 0 + 0) - (0 - 0 + 0))[/tex]
[tex] = \frac{1}{4} ( \frac{3}{4} \pi)[/tex]
[tex] = \frac{3}{16} \pi[/tex]
Penjelasan dengan langkah-langkah:
Integral Trigonometri
Cara 1
sin²x = ½(1-cos2x)
cos²x = ½(1+cos2x)
ʃ sin⁴x dx [ 0 π/2 ]
sin⁴x => (sin²x)² => (½(1-cos2x))²
= ʃ (½(1-cos2x))² dx [ 0 π/2 ]
= ʃ ¼ . (1-cos2x)² dx [ 0 π/2 ]
= ¼ ʃ (1 - 2cos2x + cos²2x dx) [ 0 π/2]
= ¼ʃ dx - ½ʃ cos 2x dx + ¼ʃ cos²2x dx [ 0 π/2 ]
= ¼x - ½(½ sin 2x) + ¼ʃ (½(1+cos4x) dx [ 0 π/2 ]
= (¼(π/2)- (¼(sin 2(π/2) + ⅛(x+¼sin4x) [ 0 π/2 ]
= ⅛π - ¼sin π + ⅛(x+¼sin4x [ 0 π/2])
= ⅛π - 0 + (⅛(π/2 + ¼sin4(π/2))
= ⅛π + (⅛(π/2 + 0)
= ⅛π + π/16
= (2π+π)/16
= 3π/16
Cara 2
ʃ sin⁴x dx
= -¼(sin³x.cosx) + ¾.ʃ sin²x dx [ 0 π/2 ]
= -¼(sin³x.cosx) + ¾.ʃ ½(1-cos 2x) dx [ 0 π/2 ]
= -¼(sin³x.cosx) + ⅜.ʃ 1 - cos 2x dx [ 0 π/2 ]
= -¼(sin³x.cosx) + ⅜(x - ½sin2x) [ 0 π/2 ]
= -¼(sin³x.cosx) + ⅜x - 1/16.sin2x
= -¼(sin³(π/2).cos(π/2] + ⅜(π/2) - 1/16.sin(2.π/2)
= 0 + 3π/16 - 0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
[tex] = \displaystyle \int_{0}^{\frac{\pi}{2}}\sin^4 x~dx[/tex]
[tex] = \displaystyle \int_{0}^{\frac{\pi}{2}}( {sin}^{2} x) {}^{2} \: dx [/tex]
[tex]= \displaystyle \int_{0}^{\frac{\pi}{2}}( \frac{1}{2} (1 - cos(2x))) {}^{2} \: dx[/tex]
[tex]= \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{1}{4} (1 - cos(2x)) {}^{2} \: dx [/tex]
[tex] = \frac{1}{4} \displaystyle \int_{0}^{\frac{\pi}{2}}(1 - cos(2x)) {}^{2} \: dx[/tex]
[tex]= \frac{1}{4} \displaystyle \int_{0}^{\frac{\pi}{2}}1 - 2cos(2x) + cos {}^{2} x \: dx[/tex]
[tex]= \frac{1}{4} \displaystyle \int_{0}^{\frac{\pi}{2}}1 - 2cos(2x) + \frac{1}{2} (1 + cos(4x)) \: dx \\ [/tex]
[tex]= \frac{1}{4} \displaystyle \int_{0}^{\frac{\pi}{2}}1 - 2cos(2x) + \frac{1}{2} + \frac{1}{2} cos(4x) \: dx \\ [/tex]
[tex]= \frac{1}{4} \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{3}{2} - 2cos(2x) + \frac{1}{2} cos(4x) \: dx \\ [/tex]
[tex] = \frac{1}{4} ( \frac{3}{2} x - sin(2x) + \frac{1}{8} sin(4x))_{0}^{ \frac{\pi}{2} } [/tex]
[tex] = \frac{1}{4} (( \frac{3}{2} ( \frac{\pi}{2} ) - sin(2( \frac{\pi}{2} )) + \frac{1}{8} sin(4( \frac{\pi}{2} ))) - ( \frac{3}{2} (0) - sin(2(0)) + \frac{1}{8} sin(4(0)))) \\ [/tex]
[tex] = \frac{1}{4} (( \frac{3}{4} \pi - 0 + 0) - (0 - 0 + 0))[/tex]
[tex] = \frac{1}{4} ( \frac{3}{4} \pi)[/tex]
[tex] = \frac{3}{16} \pi[/tex]
Penjelasan dengan langkah-langkah:
Integral Trigonometri
Cara 1
sin²x = ½(1-cos2x)
cos²x = ½(1+cos2x)
ʃ sin⁴x dx [ 0 π/2 ]
sin⁴x => (sin²x)² => (½(1-cos2x))²
= ʃ (½(1-cos2x))² dx [ 0 π/2 ]
= ʃ ¼ . (1-cos2x)² dx [ 0 π/2 ]
= ¼ ʃ (1 - 2cos2x + cos²2x dx) [ 0 π/2]
= ¼ʃ dx - ½ʃ cos 2x dx + ¼ʃ cos²2x dx [ 0 π/2 ]
= ¼x - ½(½ sin 2x) + ¼ʃ (½(1+cos4x) dx [ 0 π/2 ]
= (¼(π/2)- (¼(sin 2(π/2) + ⅛(x+¼sin4x) [ 0 π/2 ]
= ⅛π - ¼sin π + ⅛(x+¼sin4x [ 0 π/2])
= ⅛π - 0 + (⅛(π/2 + ¼sin4(π/2))
= ⅛π + (⅛(π/2 + 0)
= ⅛π + π/16
= (2π+π)/16
= 3π/16
Cara 2
ʃ sin⁴x dx
= -¼(sin³x.cosx) + ¾.ʃ sin²x dx [ 0 π/2 ]
= -¼(sin³x.cosx) + ¾.ʃ ½(1-cos 2x) dx [ 0 π/2 ]
= -¼(sin³x.cosx) + ⅜.ʃ 1 - cos 2x dx [ 0 π/2 ]
= -¼(sin³x.cosx) + ⅜(x - ½sin2x) [ 0 π/2 ]
= -¼(sin³x.cosx) + ⅜x - 1/16.sin2x
= -¼(sin³(π/2).cos(π/2] + ⅜(π/2) - 1/16.sin(2.π/2)
= 0 + 3π/16 - 0
= 3π/16