Materi : Bentuk Akar dan Pangkat
[tex][tex] \sf {c}^{ - 1} - 2 {b}^{ \frac{1}{2} } = ...[/tex][/tex]
{ b = 25 , c = ⅑ }
c-¹ - 2b¹/²
= (⅑)-¹ - 2(25)¹/²
= (9-¹)-¹ - 2(5²)¹/²
= 9¹ - 2(5¹)
= 9 - 2(5)
= 9 - 10
= -1
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
Jawaban:
Diketahui :
Jawaban :
[tex] \sf {c}^{ - 1} - {2b}^{ \frac{1}{2} } [/tex]
[tex] \sf = {( \red{ \frac{1}{9} })}^{ - 1} - {2 (\red{25})}^{ \frac{1}{2} } [/tex]
[tex] \sf = {( \frac{1}{9}) }^{ - 1} - 2( \red{ {5}^{2} }) {}^{ \frac{1}{2} } [/tex]
[tex] \sf = {( \red{ {9}^{ - 1}})}^{ - 1} - 2 ({5 \: }^{ \cancel{ 2 \: }} ) {}^{ \frac{1}{ \cancel{ \: 2 \: }} } [/tex]
[tex] \sf = {9}^{( - 1 \times - 1)} - 2( {5}^{1} )[/tex]
[tex] \sf = {9}^{(1 \times 1)} - 2(5)[/tex]
[tex] \sf = {9}^{1} - (10)[/tex]
[tex] \sf = 9 - 10[/tex]
[tex] \sf = \red{ - 1}[/tex]
'비상' (Svt)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Materi : Bentuk Akar dan Pangkat
[tex][tex] \sf {c}^{ - 1} - 2 {b}^{ \frac{1}{2} } = ...[/tex][/tex]
{ b = 25 , c = ⅑ }
c-¹ - 2b¹/²
= (⅑)-¹ - 2(25)¹/²
= (9-¹)-¹ - 2(5²)¹/²
= 9¹ - 2(5¹)
= 9 - 2(5)
= 9 - 10
= -1
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
Jawaban:
Penyelesaian :
Diketahui :
Jawaban :
[tex] \sf {c}^{ - 1} - {2b}^{ \frac{1}{2} } [/tex]
[tex] \sf = {( \red{ \frac{1}{9} })}^{ - 1} - {2 (\red{25})}^{ \frac{1}{2} } [/tex]
[tex] \sf = {( \frac{1}{9}) }^{ - 1} - 2( \red{ {5}^{2} }) {}^{ \frac{1}{2} } [/tex]
[tex] \sf = {( \red{ {9}^{ - 1}})}^{ - 1} - 2 ({5 \: }^{ \cancel{ 2 \: }} ) {}^{ \frac{1}{ \cancel{ \: 2 \: }} } [/tex]
[tex] \sf = {9}^{( - 1 \times - 1)} - 2( {5}^{1} )[/tex]
[tex] \sf = {9}^{(1 \times 1)} - 2(5)[/tex]
[tex] \sf = {9}^{1} - (10)[/tex]
[tex] \sf = 9 - 10[/tex]
[tex] \sf = \red{ - 1}[/tex]
'비상' (Svt)