..
Sifat-sifat Eksponen :
[tex]\begin{gathered} \begin{array}{ | c | c| c | } \hline\ \ \text{No}& \text{bentuk}& \text{penyederhanaan} \\ \hline 1 & a {}^{m} \times a {}^{n} &a {}^{(m + n)} \\ \hline 2 & (a {}^{m} ) {}^{n} &a {}^{(m \times n)} \\ \hline 3 & a {}^{n} \times {b}^{n} &(ab) {}^{n} \\ \hline 4 & a {}^{n} \div {b}^{n} &( \frac{a}{b} ) {}^{n} \\ \hline 5 & \frac{a {}^{m} }{ {a}^{n} } &a {}^{(m - n)} \\ \hline 6 & a {}^{0} &1 \: (a≠0) \\ \hline 7 & a {}^{ - n} & \frac{1}{a {}^{n} } \\ \hline 8 & a {}^{ \frac{m}{n} } & \sqrt[n]{a {}^{m} } \\ \hline 9 & ( \frac{a}{b}) {}^{ - n} & (\frac{b}{a} ) {}^{n} \\ \hline 10 & ( \frac{a}{b} ) {}^{n} & \frac{a {}^{n} }{ {b}^{n} } \\ \hline \end{array}\end{gathered}[/tex]
[tex]\begin{aligned} a^{\frac{1}{3}} + b^{\frac{1}{2}} &= 8^{\frac{1}{3}} + 25^{\frac{1}{2}} \\&= \sqrt[3]{8} + \sqrt[2]{25} \\&= 2 + 5 \\&= \boxed{\bold{\underline{7}}} \end{aligned}[/tex]
ㅤ[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 30 - 07 - 2023}}[/tex]
Materi : Bentuk Akar dan Pangkat
[tex][tex] \sf{a}^{ \frac{1}{3} } + {b}^{ \frac{1}{2} } = ...[/tex][/tex]
{ a = 8, b = 25 }
a¹/³ + b¹/²
= 8¹/³ + 25¹/²
= (2³)¹/³ + (5²)¹/²
= 2¹ + 5¹
= 2 + 5
= 7
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Eksponensial
..
Sifat-sifat Eksponen :
[tex]\begin{gathered} \begin{array}{ | c | c| c | } \hline\ \ \text{No}& \text{bentuk}& \text{penyederhanaan} \\ \hline 1 & a {}^{m} \times a {}^{n} &a {}^{(m + n)} \\ \hline 2 & (a {}^{m} ) {}^{n} &a {}^{(m \times n)} \\ \hline 3 & a {}^{n} \times {b}^{n} &(ab) {}^{n} \\ \hline 4 & a {}^{n} \div {b}^{n} &( \frac{a}{b} ) {}^{n} \\ \hline 5 & \frac{a {}^{m} }{ {a}^{n} } &a {}^{(m - n)} \\ \hline 6 & a {}^{0} &1 \: (a≠0) \\ \hline 7 & a {}^{ - n} & \frac{1}{a {}^{n} } \\ \hline 8 & a {}^{ \frac{m}{n} } & \sqrt[n]{a {}^{m} } \\ \hline 9 & ( \frac{a}{b}) {}^{ - n} & (\frac{b}{a} ) {}^{n} \\ \hline 10 & ( \frac{a}{b} ) {}^{n} & \frac{a {}^{n} }{ {b}^{n} } \\ \hline \end{array}\end{gathered}[/tex]
Penyelesaian Soal
[tex]\begin{aligned} a^{\frac{1}{3}} + b^{\frac{1}{2}} &= 8^{\frac{1}{3}} + 25^{\frac{1}{2}} \\&= \sqrt[3]{8} + \sqrt[2]{25} \\&= 2 + 5 \\&= \boxed{\bold{\underline{7}}} \end{aligned}[/tex]
ㅤ[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 30 - 07 - 2023}}[/tex]
Materi : Bentuk Akar dan Pangkat
[tex][tex] \sf{a}^{ \frac{1}{3} } + {b}^{ \frac{1}{2} } = ...[/tex][/tex]
{ a = 8, b = 25 }
a¹/³ + b¹/²
= 8¹/³ + 25¹/²
= (2³)¹/³ + (5²)¹/²
= 2¹ + 5¹
= 2 + 5
= 7
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]