Penjelasan dengan langkah-langkah:
cara penyelesaiannya bisa di pelajari tentang konsep pengoperasian bilangan berpangkat
[tex]\begin{aligned} \sf 1.\: \: {3}^{ - 4} &= \sf \frac{1}{ {3}^{4} } = \frac{1}{81}\end{aligned}[/tex]
__________________________
[tex]\begin{aligned} \sf 2. \: \: 25 \times {10}^{ - 4} &= \sf 25 \times \frac{1}{ {10}^{4} } \\ \sf &= \sf 25 \times \frac{1}{10.000} \\ \sf &= \sf \frac{25}{10.000} \\ \sf &= \sf \frac{1}{400} \end{aligned}[/tex]
[tex]\begin{aligned} \sf 3. \: \: \frac{8}{ {10}^{ - 3} } &= \sf 8 \div \frac{1}{ {10}^{3} } \\ \sf &= \sf 8 \times \frac{ {10}^{3} }{1 } \\ \sf &= \sf 8 \times 1.000 \\ \sf &= \sf 8.000\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
cara penyelesaiannya bisa di pelajari tentang konsep pengoperasian bilangan berpangkat
Verified answer
[tex]\begin{aligned} \sf 1.\: \: {3}^{ - 4} &= \sf \frac{1}{ {3}^{4} } = \frac{1}{81}\end{aligned}[/tex]
__________________________
[tex]\begin{aligned} \sf 2. \: \: 25 \times {10}^{ - 4} &= \sf 25 \times \frac{1}{ {10}^{4} } \\ \sf &= \sf 25 \times \frac{1}{10.000} \\ \sf &= \sf \frac{25}{10.000} \\ \sf &= \sf \frac{1}{400} \end{aligned}[/tex]
__________________________
[tex]\begin{aligned} \sf 3. \: \: \frac{8}{ {10}^{ - 3} } &= \sf 8 \div \frac{1}{ {10}^{3} } \\ \sf &= \sf 8 \times \frac{ {10}^{3} }{1 } \\ \sf &= \sf 8 \times 1.000 \\ \sf &= \sf 8.000\end{aligned}[/tex]