Se sabe que la derivada de una función está definida como:
[tex]{\displaystyle f'(x) = \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h} }[/tex]
Tenemos [tex]f(x) = 1-4x^2[/tex] por tanto, evaluando en la definición:
[tex]{\displaystyle f'(x) = \lim_{h \to 0} \dfrac{1-4(x+h)^2-(1-4x^2)}{h} }[/tex]
[tex]{\displaystyle f'(x) = \lim_{h \to 0} \dfrac{\not{1}-4(x^2+2xh+h^2)-\not{1}+4x^2}{h} }[/tex]
[tex]{\displaystyle f'(x) = \lim_{h \to 0} \dfrac{-4(x^2+2xh+h^2)+4x^2}{h} }[/tex]
[tex]{\displaystyle f'(x) = \lim_{h \to 0} \dfrac{-4x^2-8xh-4h^2+4x^2}{h} }[/tex]
[tex]{\displaystyle f'(x) = \lim_{h \to 0} \dfrac{-4h^2-8xh}{h} }[/tex]
[tex]{\displaystyle f'(x) = -\lim_{h \to 0} \dfrac{4h^2}{h}- \lim_{h \to 0} \dfrac{8xh}{h}[/tex]
[tex]{\displaystyle f'(x) = -\lim_{h \to 0} 4h- \lim_{h \to 0} 8x[/tex]
[tex]{\displaystyle f'(x) =-4(0)- 8x }[/tex]
[tex]\boxed{\displaystyle f'(x) = - 8x }[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Se sabe que la derivada de una función está definida como:
[tex]{\displaystyle f'(x) = \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h} }[/tex]
Tenemos [tex]f(x) = 1-4x^2[/tex] por tanto, evaluando en la definición:
[tex]{\displaystyle f'(x) = \lim_{h \to 0} \dfrac{1-4(x+h)^2-(1-4x^2)}{h} }[/tex]
[tex]{\displaystyle f'(x) = \lim_{h \to 0} \dfrac{\not{1}-4(x^2+2xh+h^2)-\not{1}+4x^2}{h} }[/tex]
[tex]{\displaystyle f'(x) = \lim_{h \to 0} \dfrac{-4(x^2+2xh+h^2)+4x^2}{h} }[/tex]
[tex]{\displaystyle f'(x) = \lim_{h \to 0} \dfrac{-4x^2-8xh-4h^2+4x^2}{h} }[/tex]
[tex]{\displaystyle f'(x) = \lim_{h \to 0} \dfrac{-4h^2-8xh}{h} }[/tex]
[tex]{\displaystyle f'(x) = -\lim_{h \to 0} \dfrac{4h^2}{h}- \lim_{h \to 0} \dfrac{8xh}{h}[/tex]
[tex]{\displaystyle f'(x) = -\lim_{h \to 0} 4h- \lim_{h \to 0} 8x[/tex]
[tex]{\displaystyle f'(x) =-4(0)- 8x }[/tex]
[tex]\boxed{\displaystyle f'(x) = - 8x }[/tex]
es la fórmula empírica del compuesto?