Materi : Limit Fungsi
Lim ( x => ∞ )
√( x² + 2x - 3 ) + √( 4x² + 6x + 5 ) - 3x
= √( ∞² + 2[∞] - 3 ) + √( 4[∞]² + 6∞ + 5 ) - 3∞
= √( 0 + 0 - 3 ) + √( 0 + 0 + 5 ) - 0
= √(-3) + √5
= i√3 + √5
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
PEMBAHASAN
lim x→∞ √(x² + 2x - 3) + √(4x² + 6x + 5) - 3x
= lim x→∞ √(x² + 2x - 3) + √(4x² + 6x + 5) - x - 2x
= lim x→∞ √(x² + 2x - 3) - √x² + √(4x² + 6x + 5) - √(4x²)
= (2 - 0)/(2√1) + (6 - 0)/(2√4)
= 1 + 1,5
= 2,5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Materi : Limit Fungsi
Lim ( x => ∞ )
√( x² + 2x - 3 ) + √( 4x² + 6x + 5 ) - 3x
= √( ∞² + 2[∞] - 3 ) + √( 4[∞]² + 6∞ + 5 ) - 3∞
= √( 0 + 0 - 3 ) + √( 0 + 0 + 5 ) - 0
= √(-3) + √5
= i√3 + √5
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
Verified answer
PEMBAHASAN
lim x→∞ √(x² + 2x - 3) + √(4x² + 6x + 5) - 3x
= lim x→∞ √(x² + 2x - 3) + √(4x² + 6x + 5) - x - 2x
= lim x→∞ √(x² + 2x - 3) - √x² + √(4x² + 6x + 5) - √(4x²)
= (2 - 0)/(2√1) + (6 - 0)/(2√4)
= 1 + 1,5
= 2,5