Penjelasan dengan langkah-langkah:
LogAritma
^2 log(x²-2) = ^(x²-2) log2
^2 log(x²-2) = ^2 log2/^2 log(x²-2)
^2 log(x²-2)(^2 log(x²-2)) = ^2 log2
^2 log(x²-2)² = ^2 log2
^2 log(x²-2)² = 1
^2 log(x²-2) = √1
^2 log(x²-2) = ±1
...untuk ^2 log(x²-2) = -1 → x²-2 = 2^-1
x²-2 = ½
x² = ½+2
x² = ½5
x = ±√½5
x = ±(√5/√2 × √2/√2)
x = ±½√10
...untuk ^2 log(x²-2) = 1 → x²-2 = 2^1
x²-2 = 2
x² = 2+2
x² = 4
x = √4
x = ±2
.
maka nilai x = {-2 , -½√10 , ½√10 , 2}
PEMBAHASAN
[tex] \displaystyle \sf ^{2}log \: ( {x}^{2} - 2) = \ ^{ {x}^{2} - 2}log \: 2 \\ \\ \displaystyle \sf \: {(log \: 2)}^{2} = \: {(log \: ( {x}^{2} - 2))}^{2} [/tex]
__
(log (x² - 2))² - (log 2)² = 0
(log (x² - 2) + log 2)(log (x² - 2) - log 2)) = 0
(log 2(x² - 2)) (log (x² - 2)/2) = 0
log 2(x² - 2) = 0
2(x² - 2) = 1
x² - 2 = 1/2
x² = 5/2
x = - √(5/2) = - 1/2 √10 atau x = √(5/2) = 1/2 √10
log (x² - 2)/2 = 0
(x² - 2)/2 = 1
x² - 2 = 2
x = -2 atau x = 2
Nilai x yang memenuhi ada 4 :
-2 , -1/2 √10 , 1/2 √10 , dan 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
LogAritma
^2 log(x²-2) = ^(x²-2) log2
^2 log(x²-2) = ^2 log2/^2 log(x²-2)
^2 log(x²-2)(^2 log(x²-2)) = ^2 log2
^2 log(x²-2)² = ^2 log2
^2 log(x²-2)² = 1
^2 log(x²-2) = √1
^2 log(x²-2) = ±1
...untuk ^2 log(x²-2) = -1 → x²-2 = 2^-1
x²-2 = ½
x² = ½+2
x² = ½5
x = ±√½5
x = ±(√5/√2 × √2/√2)
x = ±½√10
...untuk ^2 log(x²-2) = 1 → x²-2 = 2^1
x²-2 = 2
x² = 2+2
x² = 4
x = √4
x = ±2
.
maka nilai x = {-2 , -½√10 , ½√10 , 2}
PEMBAHASAN
[tex] \displaystyle \sf ^{2}log \: ( {x}^{2} - 2) = \ ^{ {x}^{2} - 2}log \: 2 \\ \\ \displaystyle \sf \: {(log \: 2)}^{2} = \: {(log \: ( {x}^{2} - 2))}^{2} [/tex]
__
(log (x² - 2))² - (log 2)² = 0
(log (x² - 2) + log 2)(log (x² - 2) - log 2)) = 0
(log 2(x² - 2)) (log (x² - 2)/2) = 0
log 2(x² - 2) = 0
2(x² - 2) = 1
x² - 2 = 1/2
x² = 5/2
x = - √(5/2) = - 1/2 √10 atau x = √(5/2) = 1/2 √10
log (x² - 2)/2 = 0
(x² - 2)/2 = 1
x² - 2 = 2
x² = 4
x = -2 atau x = 2
Nilai x yang memenuhi ada 4 :
-2 , -1/2 √10 , 1/2 √10 , dan 2