Jadikan identitas trigonometri ini ke bentuk paling sederhana
[tex]\sf{\dfrac{cot (x) - csc (x) + 1}{cot (x) + csc (x) - 1} = tan \left( \dfrac{x}{2} \right) }[/tex]
Misalnya :
[tex]\sf{\dfrac{cot (x) - csc (x) + 1}{cot (x) + csc (x) - 1} = \dfrac{a}{b}}[/tex]
Perhatikan
[tex]\sf{cot (x) = \dfrac{1}{tan (x)} = \dfrac{cos (x)}{sin (x)}}[/tex]
[tex]\sf{cosec (x) = \dfrac{1}{sin (x)}}[/tex]
Pembilang
[tex]\sf{a = cot (x) - csc (x) + 1}[/tex]
[tex]\sf{a = cot (x) - cosec (x) + 1}[/tex]
[tex]\sf{a = \dfrac{cos (x)}{sin (x)} - \dfrac{1}{sin (x)} + \dfrac{sin (x)}{sin (x)}}[/tex]
[tex]\sf{a = \dfrac{cos (x) - 1 + sin (x)}{sin (x)}}[/tex]
Penyebut
[tex]\sf{b = cot (x) + csc (x) - 1}[/tex]
[tex]\sf{b = cot (x) + cosec (x) - 1}[/tex]
[tex]\sf{b = \dfrac{cos (x)}{sin (x)} + \dfrac{1}{sin (x)} - \dfrac{sin (x)}{sin (x)}}[/tex]
[tex]\sf{b = \dfrac{cos (x) + 1 - sin (x)}{sin (x)}}[/tex]
[tex]\sf{\dfrac{a}{b} = a \div b}[/tex]
[tex]\sf{\dfrac{a}{b} = \dfrac{cos (x) - 1 + sin (x)}{sin (x)} \div \dfrac{cos (x) + 1 - sin (x)}{sin (x)}}[/tex]
[tex]\sf{\dfrac{a}{b} = \dfrac{cos (x) - 1 + sin (x)}{sin (x)} \times \dfrac{sin (x)}{cos (x) + 1 - sin (x)}}[/tex]
[tex]\sf{\dfrac{a}{b} = \dfrac{cos (x) - 1 + sin (x)}{cos (x) + 1 - sin (x)}}[/tex]
[tex]\sf{a = cos (x) - 1 + sin (x)}[/tex]
[tex]\sf{b = cos (x) + 1 - sin (x)}[/tex]
Sinus
[tex]\sf{sin (2a) = 2 sin (a) \: cos (a)}[/tex]
Jika [tex]\sf{a = \dfrac{x}{2}}[/tex] maka
[tex]\sf{sin (x) = 2 sin \left( \dfrac{x}{2} \right) \: cos \left( \dfrac{x}{2} \right)}[/tex]
Cosinus
[tex]\sf{cos (2a) = 2 {cos}^2 (a) - 1}[/tex]
[tex]\sf{cos (2a) = 1 - 2 {sin}^2 (a)}[/tex]
[tex]\sf{cos (x) = 2 {cos}^2 \left( \dfrac{x}{2} \right) - 1}[/tex]
[tex]\sf{cos \: x = 1 - 2 {sin}^2 \left( \dfrac{x}{2} \right)}[/tex]
[tex]\sf{a = 1 - 2 {sin}^2 \left( \dfrac{x}{2} \right) - 1 + 2 sin \left( \dfrac{x}{2} \right) \: cos \left( \dfrac{x}{2} \right)}[/tex]
[tex]\sf{a = - 2 {sin}^2 \left( \dfrac{x}{2} \right) + 2 sin \left( \dfrac{x}{2} \right) \: cos \left( \dfrac{x}{2} \right)}[/tex]
[tex]\sf{a = sin \left( \dfrac{x}{2} \right) \: \left( -2 sin \left( \dfrac{x}{2} \right) + 2 cos \left( \dfrac{x}{2} \right) \right) }[/tex]
[tex]\sf{a = sin \left( \dfrac{x}{2} \right) \: \left( 2 cos \left( \dfrac{x}{2} \right) -2 sin \left( \dfrac{x}{2} \right) \right) }[/tex]
[tex]\sf{b = 2 {cos}^2 \left( \dfrac{x}{2} \right) - 1 + 1 - 2 sin \left( \dfrac{x}{2} \right) \: cos \left( \dfrac{x}{2} \right)}[/tex]
[tex]\sf{b = 2 {cos}^2 \left( \dfrac{x}{2} \right) - 2 sin \left( \dfrac{x}{2} \right) \: cos \left( \dfrac{x}{2} \right) }[/tex]
[tex]\sf{b = cos \left( \dfrac{x}{2} \right) \: \left( 2 cos \left( \dfrac{x}{2} \right) - 2 sin \left( \dfrac{x}{2} \right) \right) }[/tex]
[tex]\sf{\dfrac{cot (x) - csc (x) + 1}{cot (x) + csc (x) - 1}}[/tex]
[tex]\sf{= \dfrac{a}{b}}[/tex]
[tex]\sf{= \dfrac{sin \left( \dfrac{x}{2} \right) \: \left( 2 cos \left( \dfrac{x}{2} \right) -2 sin \left( \dfrac{x}{2} \right) \right) }{ cos \left( \dfrac{x}{2} \right) \left( 2 cos \left( \dfrac{x}{2} \right) - 2 sin \left( \dfrac{x}{2} \right) \right)}}[/tex]
[tex]\sf{= \dfrac{sin \left( \dfrac{x}{2} \right) }{ cos \left( \dfrac{x}{2} \right) }}[/tex]
[tex]\sf{= tan \left( \dfrac{x}{2} \right)}[/tex]
•••——————————•••
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jadikan identitas trigonometri ini ke bentuk paling sederhana
[tex]\sf{\dfrac{cot (x) - csc (x) + 1}{cot (x) + csc (x) - 1} = tan \left( \dfrac{x}{2} \right) }[/tex]
Pembahasan :
Misalnya :
[tex]\sf{\dfrac{cot (x) - csc (x) + 1}{cot (x) + csc (x) - 1} = \dfrac{a}{b}}[/tex]
Perhatikan
[tex]\sf{cot (x) = \dfrac{1}{tan (x)} = \dfrac{cos (x)}{sin (x)}}[/tex]
[tex]\sf{cosec (x) = \dfrac{1}{sin (x)}}[/tex]
Pembilang
[tex]\sf{a = cot (x) - csc (x) + 1}[/tex]
[tex]\sf{a = cot (x) - cosec (x) + 1}[/tex]
[tex]\sf{a = \dfrac{cos (x)}{sin (x)} - \dfrac{1}{sin (x)} + \dfrac{sin (x)}{sin (x)}}[/tex]
[tex]\sf{a = \dfrac{cos (x) - 1 + sin (x)}{sin (x)}}[/tex]
Penyebut
[tex]\sf{b = cot (x) + csc (x) - 1}[/tex]
[tex]\sf{b = cot (x) + cosec (x) - 1}[/tex]
[tex]\sf{b = \dfrac{cos (x)}{sin (x)} + \dfrac{1}{sin (x)} - \dfrac{sin (x)}{sin (x)}}[/tex]
[tex]\sf{b = \dfrac{cos (x) + 1 - sin (x)}{sin (x)}}[/tex]
[tex]\sf{\dfrac{cot (x) - csc (x) + 1}{cot (x) + csc (x) - 1} = \dfrac{a}{b}}[/tex]
[tex]\sf{\dfrac{a}{b} = a \div b}[/tex]
[tex]\sf{\dfrac{a}{b} = \dfrac{cos (x) - 1 + sin (x)}{sin (x)} \div \dfrac{cos (x) + 1 - sin (x)}{sin (x)}}[/tex]
[tex]\sf{\dfrac{a}{b} = \dfrac{cos (x) - 1 + sin (x)}{sin (x)} \times \dfrac{sin (x)}{cos (x) + 1 - sin (x)}}[/tex]
[tex]\sf{\dfrac{a}{b} = \dfrac{cos (x) - 1 + sin (x)}{cos (x) + 1 - sin (x)}}[/tex]
[tex]\sf{a = cos (x) - 1 + sin (x)}[/tex]
[tex]\sf{b = cos (x) + 1 - sin (x)}[/tex]
Sinus
[tex]\sf{sin (2a) = 2 sin (a) \: cos (a)}[/tex]
Jika [tex]\sf{a = \dfrac{x}{2}}[/tex] maka
[tex]\sf{sin (x) = 2 sin \left( \dfrac{x}{2} \right) \: cos \left( \dfrac{x}{2} \right)}[/tex]
Cosinus
[tex]\sf{cos (2a) = 2 {cos}^2 (a) - 1}[/tex]
[tex]\sf{cos (2a) = 1 - 2 {sin}^2 (a)}[/tex]
Jika [tex]\sf{a = \dfrac{x}{2}}[/tex] maka
[tex]\sf{cos (x) = 2 {cos}^2 \left( \dfrac{x}{2} \right) - 1}[/tex]
[tex]\sf{cos \: x = 1 - 2 {sin}^2 \left( \dfrac{x}{2} \right)}[/tex]
[tex]\sf{a = cos (x) - 1 + sin (x)}[/tex]
[tex]\sf{a = 1 - 2 {sin}^2 \left( \dfrac{x}{2} \right) - 1 + 2 sin \left( \dfrac{x}{2} \right) \: cos \left( \dfrac{x}{2} \right)}[/tex]
[tex]\sf{a = - 2 {sin}^2 \left( \dfrac{x}{2} \right) + 2 sin \left( \dfrac{x}{2} \right) \: cos \left( \dfrac{x}{2} \right)}[/tex]
[tex]\sf{a = sin \left( \dfrac{x}{2} \right) \: \left( -2 sin \left( \dfrac{x}{2} \right) + 2 cos \left( \dfrac{x}{2} \right) \right) }[/tex]
[tex]\sf{a = sin \left( \dfrac{x}{2} \right) \: \left( 2 cos \left( \dfrac{x}{2} \right) -2 sin \left( \dfrac{x}{2} \right) \right) }[/tex]
[tex]\sf{b = cos (x) + 1 - sin (x)}[/tex]
[tex]\sf{b = 2 {cos}^2 \left( \dfrac{x}{2} \right) - 1 + 1 - 2 sin \left( \dfrac{x}{2} \right) \: cos \left( \dfrac{x}{2} \right)}[/tex]
[tex]\sf{b = 2 {cos}^2 \left( \dfrac{x}{2} \right) - 2 sin \left( \dfrac{x}{2} \right) \: cos \left( \dfrac{x}{2} \right) }[/tex]
[tex]\sf{b = cos \left( \dfrac{x}{2} \right) \: \left( 2 cos \left( \dfrac{x}{2} \right) - 2 sin \left( \dfrac{x}{2} \right) \right) }[/tex]
[tex]\sf{\dfrac{cot (x) - csc (x) + 1}{cot (x) + csc (x) - 1}}[/tex]
[tex]\sf{= \dfrac{a}{b}}[/tex]
[tex]\sf{= \dfrac{sin \left( \dfrac{x}{2} \right) \: \left( 2 cos \left( \dfrac{x}{2} \right) -2 sin \left( \dfrac{x}{2} \right) \right) }{ cos \left( \dfrac{x}{2} \right) \left( 2 cos \left( \dfrac{x}{2} \right) - 2 sin \left( \dfrac{x}{2} \right) \right)}}[/tex]
[tex]\sf{= \dfrac{sin \left( \dfrac{x}{2} \right) }{ cos \left( \dfrac{x}{2} \right) }}[/tex]
[tex]\sf{= tan \left( \dfrac{x}{2} \right)}[/tex]
•••——————————•••
Detail jawaban :