Jawab:
D. [tex]\displaystyle \bold{\dfrac{\pi^{2} }{64}(1 -\dfrac{\pi^{2} }{12})}[/tex]
Penjelasan dengan langkah-langkah:
[tex]\sf\dfrac{1}{3^4}+\dfrac{3}{5^4}+\dfrac{6}{7^4}+\dfrac{10}{9^4}+\cdots=\cdots[/tex]
rumus suku ke-n dari barisan diatas:
[tex]\displaystyle \dfrac{\dfrac{n(n+1)}{2} }{(2n+1)^{4}}[/tex]
Jadi:
[tex]\displaystyle \sum\limits_{n=1}^{\infty}\dfrac{\dfrac{n(n+1)}{2} }{(2n+1)^{4}}[/tex]
= [tex]\displaystyle \dfrac{1}{2} \sum\limits_{n=1}^{\infty}\dfrac{n(n+1)}{(2n+1)^{4}}[/tex]
= [tex]\displaystyle \dfrac{1}{2} \sum\limits_{n=1}^{\infty}\dfrac{\dfrac{1}{4}(2n+1)^{2}-\dfrac{1}{4}}{(2n+1)^{4}}[/tex]
= [tex]\displaystyle \dfrac{1}{8} \sum\limits_{n=1}^{\infty}\dfrac{1}{(2n+1)^{2}}- \dfrac{1}{8} \sum\limits_{n=1}^{\infty}\dfrac{1}{(2n+1)^{4}}[/tex]
= [tex]\displaystyle \dfrac{1}{8} (\dfrac{\pi^{2} }{8} -1)-\frac{1}{8}\:[\frac{15}{16} .S (4) - 1][/tex]
= [tex]\displaystyle \dfrac{\pi^{2} }{64} -\frac{1}{8}.\frac{15}{16}.\dfrac{\pi^{4} }{90}[/tex]
= [tex]\displaystyle \dfrac{\pi^{2} }{64} -\dfrac{\pi^{4} }{768}[/tex]
= [tex]\displaystyle \bold{\dfrac{\pi^{2} }{64}(1 -\dfrac{\pi^{2} }{12})}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawab:
D. [tex]\displaystyle \bold{\dfrac{\pi^{2} }{64}(1 -\dfrac{\pi^{2} }{12})}[/tex]
Penjelasan dengan langkah-langkah:
[tex]\sf\dfrac{1}{3^4}+\dfrac{3}{5^4}+\dfrac{6}{7^4}+\dfrac{10}{9^4}+\cdots=\cdots[/tex]
rumus suku ke-n dari barisan diatas:
[tex]\displaystyle \dfrac{\dfrac{n(n+1)}{2} }{(2n+1)^{4}}[/tex]
Jadi:
[tex]\displaystyle \sum\limits_{n=1}^{\infty}\dfrac{\dfrac{n(n+1)}{2} }{(2n+1)^{4}}[/tex]
= [tex]\displaystyle \dfrac{1}{2} \sum\limits_{n=1}^{\infty}\dfrac{n(n+1)}{(2n+1)^{4}}[/tex]
= [tex]\displaystyle \dfrac{1}{2} \sum\limits_{n=1}^{\infty}\dfrac{\dfrac{1}{4}(2n+1)^{2}-\dfrac{1}{4}}{(2n+1)^{4}}[/tex]
= [tex]\displaystyle \dfrac{1}{8} \sum\limits_{n=1}^{\infty}\dfrac{1}{(2n+1)^{2}}- \dfrac{1}{8} \sum\limits_{n=1}^{\infty}\dfrac{1}{(2n+1)^{4}}[/tex]
= [tex]\displaystyle \dfrac{1}{8} (\dfrac{\pi^{2} }{8} -1)-\frac{1}{8}\:[\frac{15}{16} .S (4) - 1][/tex]
= [tex]\displaystyle \dfrac{\pi^{2} }{64} -\frac{1}{8}.\frac{15}{16}.\dfrac{\pi^{4} }{90}[/tex]
= [tex]\displaystyle \dfrac{\pi^{2} }{64} -\dfrac{\pi^{4} }{768}[/tex]
= [tex]\displaystyle \bold{\dfrac{\pi^{2} }{64}(1 -\dfrac{\pi^{2} }{12})}[/tex]