Penjelasan dengan langkah-langkah:
[tex]\begin{aligned}\frac{2x - 2 {x}^{2} }{ {x}^{3} - 2 {x}^{2} + x} =&=\frac{2x(1-x)}{x(x^2-2x+1)}\\&=\frac{2x(1-x)}{x(x-1)(x-1)}\\&=\frac{2(1-x)}{(x-1)(x-1)}\\&=\frac{2\times-1}{×-1}\\&=\boxed{-\frac{2}{x-1}}\end{aligned}[/tex]
..
[tex]\begin{aligned} \sf \frac{2x - 2 {x}^{2} }{ {x}^{3} - 2 {x}^{2} + x} & \sf = \frac{x \times (2 - 2x)}{x \times (x {}^{2} \times 2x + 1)} \\&\sf = \frac{2 \times (1 - x)}{ {(x - 1)}^{2} } \\&\sf = \frac{2 \times ( - (x - 1))}{ {(x - 1)}^{2} } \\&\sf = \frac{2 \times ( - 1)}{x - 1} \\&\sf = \boxed{\bold{\underline{}\sf - \frac{2}{x - 1} }}\end{aligned}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 07 - 07 - 2023}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned}\frac{2x - 2 {x}^{2} }{ {x}^{3} - 2 {x}^{2} + x} =&=\frac{2x(1-x)}{x(x^2-2x+1)}\\&=\frac{2x(1-x)}{x(x-1)(x-1)}\\&=\frac{2(1-x)}{(x-1)(x-1)}\\&=\frac{2\times-1}{×-1}\\&=\boxed{-\frac{2}{x-1}}\end{aligned}[/tex]
Algebra
..
[tex]\begin{aligned} \sf \frac{2x - 2 {x}^{2} }{ {x}^{3} - 2 {x}^{2} + x} & \sf = \frac{x \times (2 - 2x)}{x \times (x {}^{2} \times 2x + 1)} \\&\sf = \frac{2 \times (1 - x)}{ {(x - 1)}^{2} } \\&\sf = \frac{2 \times ( - (x - 1))}{ {(x - 1)}^{2} } \\&\sf = \frac{2 \times ( - 1)}{x - 1} \\&\sf = \boxed{\bold{\underline{}\sf - \frac{2}{x - 1} }}\end{aligned}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 07 - 07 - 2023}}[/tex]