Materi : Limit Fungsi
Lim ( x => 5 )
( 3x² + √x - 1 )/( x² - 3 )
= ( 3[5]² + √5 - 1 )/( 5² - 3 )
= ( 3[25] + √5 - 1 )/( 25 - 3 )
= ( 74 + √5 )/22
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
Jawaban:
[tex] \frac{374 + \sqrt{5} }{22} [/tex]
Penjelasan dengan langkah-langkah:
[tex] \displaystyle \lim_{x \to5} \frac{ {3x}^{3} + \sqrt{x} - 1}{ {x}^{2} - 3 }[/tex]
[tex] = \frac{ {3(5)}^{3} + \sqrt{5} - 1}{ {5}^{2} - 3 }[/tex]
[tex] = \frac{ 3(125) + \sqrt{5} - 1}{ 25 - 3 }[/tex]
[tex] = \frac{375 +\sqrt{5} - 1 }{22} [/tex]
[tex] = \bold{\frac{374 + \sqrt{5} }{22} }[/tex]
- Happy Birthday Friends
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Materi : Limit Fungsi
Lim ( x => 5 )
( 3x² + √x - 1 )/( x² - 3 )
= ( 3[5]² + √5 - 1 )/( 5² - 3 )
= ( 3[25] + √5 - 1 )/( 25 - 3 )
= ( 74 + √5 )/22
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
Verified answer
Jawaban:
[tex] \frac{374 + \sqrt{5} }{22} [/tex]
Penjelasan dengan langkah-langkah:
[tex] \displaystyle \lim_{x \to5} \frac{ {3x}^{3} + \sqrt{x} - 1}{ {x}^{2} - 3 }[/tex]
[tex] = \frac{ {3(5)}^{3} + \sqrt{5} - 1}{ {5}^{2} - 3 }[/tex]
[tex] = \frac{ 3(125) + \sqrt{5} - 1}{ 25 - 3 }[/tex]
[tex] = \frac{375 +\sqrt{5} - 1 }{22} [/tex]
[tex] = \bold{\frac{374 + \sqrt{5} }{22} }[/tex]
- Happy Birthday Friends