..
[tex]\lim\limits_{x\to 5} \left(\dfrac{ x^2+4x }{ x+4 } \right)[/tex]
[tex]\begin{aligned} &= \frac{5^2 + 4(5)}{5+4} \\&= \frac{25 + 20}{9} \\&= \frac{45}{9} \\&= \underline{\boxed{\bold{5}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{Memperingati Hari Palang Merah Internasional}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 08 - 05 - 2023}}[/tex]
Jawaban:
5
Penjelasan dengan langkah-langkah:
Langsung Substitusikan 5 ke persamaan
[tex]\displaystyle \lim\limits_{x\to 5} \dfrac{ x^2+4x }{ x+4 } \\ \\ \dfrac{ (5)^2+4(5) }{ (5)+4 } \\ \\ \dfrac{ 25+20 }{ 9 } \\ \\ \dfrac{ 45}{ 9 } \\ \\ 5[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Limit
[Metode Subtitusi]
..
[tex]\lim\limits_{x\to 5} \left(\dfrac{ x^2+4x }{ x+4 } \right)[/tex]
[tex]\begin{aligned} &= \frac{5^2 + 4(5)}{5+4} \\&= \frac{25 + 20}{9} \\&= \frac{45}{9} \\&= \underline{\boxed{\bold{5}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{Memperingati Hari Palang Merah Internasional}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 08 - 05 - 2023}}[/tex]
Jawaban:
5
Penjelasan dengan langkah-langkah:
Langsung Substitusikan 5 ke persamaan
[tex]\displaystyle \lim\limits_{x\to 5} \dfrac{ x^2+4x }{ x+4 } \\ \\ \dfrac{ (5)^2+4(5) }{ (5)+4 } \\ \\ \dfrac{ 25+20 }{ 9 } \\ \\ \dfrac{ 45}{ 9 } \\ \\ 5[/tex]