PEMBAHASAN
Integral Tentu
∫axⁿ dx = a/(n+1) xⁿ⁺¹ + C
∫(14x + 12) dx [6 3]
= 14/(1 + 1) x² + 12x
= 7x² + 12x
= 7(6² - 3²) + 12(6 - 3)
= 7 × 27 + 36
= 225
Jawab:
[tex]\displaystyle \int_{3}^{6}{14x+12}~dx = 225[/tex]
Penjelasan dengan langkah-langkah:
[tex]\displaystyle \int\limits_{3}^{6}{14x+12}~dx[/tex]
[tex]= \dfrac{14}{1+1} x^{1+1} + 12x^{0+1} ~]_3^{6}[/tex]
[tex]= \dfrac{14}{2} x^{2} + 12x^{1} ~]_3^{6}[/tex]
[tex]= 7x^{2} +12x ~]_3^{6}[/tex]
[tex]= (7(6)^{2} +12(6)) - (7(3)^{2} +12(3))[/tex]
= 324 - 99
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
PEMBAHASAN
Integral Tentu
∫axⁿ dx = a/(n+1) xⁿ⁺¹ + C
∫(14x + 12) dx [6 3]
= 14/(1 + 1) x² + 12x
= 7x² + 12x
= 7(6² - 3²) + 12(6 - 3)
= 7 × 27 + 36
= 225
Verified answer
Jawab:
[tex]\displaystyle \int_{3}^{6}{14x+12}~dx = 225[/tex]
Penjelasan dengan langkah-langkah:
[tex]\displaystyle \int\limits_{3}^{6}{14x+12}~dx[/tex]
[tex]= \dfrac{14}{1+1} x^{1+1} + 12x^{0+1} ~]_3^{6}[/tex]
[tex]= \dfrac{14}{2} x^{2} + 12x^{1} ~]_3^{6}[/tex]
[tex]= 7x^{2} +12x ~]_3^{6}[/tex]
[tex]= (7(6)^{2} +12(6)) - (7(3)^{2} +12(3))[/tex]
= 324 - 99
= 225