17
Penjelasan dengan langkah-langkah:
[tex]\displaystyle\rm~ x = 1 =y-z =\dfrac{ z}{ 3}[/tex]
[tex]\displaystyle\rm~ xy+x^2y+z^2 = ...?[/tex]
x = 1
[tex]\displaystyle\rm~ \frac{z}{3} = 1 \\ \displaystyle\rm~z = 1.3 \\ \displaystyle\rm~z = 3[/tex]
y - z = 1
y - 3 = 1
y = 1 + 3
y = 4
maka,
[tex]\begin{aligned} \displaystyle\rm~xy+x^2y+z^2 \ \displaystyle\rm~ & = (1)(4) + ({1}^{2} )(4) + {3}^{2} \\ \displaystyle\rm~ & = 4 + 4 + 9 \\ \displaystyle\rm~ & = 17 \end{aligned} [/tex]
[tex]x = 1 \\ y - z = 1 \\ \frac{z}{3} = 1 \\ z = 3 \\ \\ y - z = 1 \\ y - 3 = 1 \\ y = 1 + 3 \\ y = 4 \\ \\ x =1 \\ y = 4 \\ z = 3[/tex]
[tex]xy + {x}^{2} y + {z}^{2} \\ (1)(4) + {(1)}^{2} 4 + {(3)}^{2} \\ 4 + 4 + 9 = 17[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
17
Penjelasan dengan langkah-langkah:
Diketahui:
[tex]\displaystyle\rm~ x = 1 =y-z =\dfrac{ z}{ 3}[/tex]
Ditanya:
[tex]\displaystyle\rm~ xy+x^2y+z^2 = ...?[/tex]
Penyelesaian:
x = 1
[tex]\displaystyle\rm~ \frac{z}{3} = 1 \\ \displaystyle\rm~z = 1.3 \\ \displaystyle\rm~z = 3[/tex]
y - z = 1
y - 3 = 1
y = 1 + 3
y = 4
maka,
[tex]\begin{aligned} \displaystyle\rm~xy+x^2y+z^2 \ \displaystyle\rm~ & = (1)(4) + ({1}^{2} )(4) + {3}^{2} \\ \displaystyle\rm~ & = 4 + 4 + 9 \\ \displaystyle\rm~ & = 17 \end{aligned} [/tex]
Penjelasan dengan langkah-langkah:
[tex]x = 1 \\ y - z = 1 \\ \frac{z}{3} = 1 \\ z = 3 \\ \\ y - z = 1 \\ y - 3 = 1 \\ y = 1 + 3 \\ y = 4 \\ \\ x =1 \\ y = 4 \\ z = 3[/tex]
[tex]xy + {x}^{2} y + {z}^{2} \\ (1)(4) + {(1)}^{2} 4 + {(3)}^{2} \\ 4 + 4 + 9 = 17[/tex]