Penjelasan dengan langkah-langkah:
persamaan kuadrat
bentuk umum: [tex] ax^2 + bx + c = 0 [/tex] , dimana a ≠ 0.
[tex]16 {x}^{2} - 4x - 6 = 0[/tex]
kedua ruas dikalikan sama dgn [tex] \sf x \: \frac{1}{2} \\ [/tex].
[tex]16 {x}^{2} \: . \: \frac{1}{2} - 4x \: . \: \frac{1}{2} - 6 \: . \: \frac{1}{2} = 0 \\ 8 {x}^{2} - 2x - 3 = 0[/tex]
mencari akar akar penyelesaian dgn menggunakan methode rumus kuadratik/ABC.
[tex]8 {x}^{2} - 2x - 3 = 0 \\ a = 8 \: \: b = - 2 \: dan \: c = - 3[/tex]
[tex] x_{ 1 \: , \: 2 } = \frac{ -b \: \pm \: \sqrt{ {b}^{2} - 4ac } }{2a} \\ x_{ 1 \: , \: 2 } = \frac{ - ( - 2) \: \pm \: \sqrt{( - 2) {}^{2} - 4(8)( - 3)} }{2(8)} \\ x_{ 1 \: , \: 2 } = \frac{2 \: \pm \: \sqrt{4 + 96} }{16} \\ x_{ 1 \: , \: 2 } = \frac{2\: \pm \: \sqrt{100} }{16} \\ x_{ 1 \: , \: 2 } = \frac{2 \: \pm \: 10 }{16} [/tex]
menentukan akar akar solusi penyelesaian:
[tex] x_{1} = \frac{2+ 10}{16} = \frac{12}{16} = \frac{3}{4} \\ x_{2} = \frac{2- 10}{16} = - \frac{8}{16} = - \frac{1}{2} [/tex]
[tex]HP = ( \: - \frac{1}{2} \: , \: \frac{3}{4} \: ) \\ [/tex]
PEMBAHASAN
Persamaan Kuadrat
16x² - 4x - 6 = 0
8x² - 2x - 3 = 0
(4x - 3)(2x + 1) = 0
4x - 3 = 0 → x = 3/4
atau
2x + 1 = 0 → x = -1/2
x = {-1/2 , 3/4}
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Penjelasan dengan langkah-langkah:
persamaan kuadrat
bentuk umum: [tex] ax^2 + bx + c = 0 [/tex] , dimana a ≠ 0.
[tex]16 {x}^{2} - 4x - 6 = 0[/tex]
kedua ruas dikalikan sama dgn [tex] \sf x \: \frac{1}{2} \\ [/tex].
[tex]16 {x}^{2} \: . \: \frac{1}{2} - 4x \: . \: \frac{1}{2} - 6 \: . \: \frac{1}{2} = 0 \\ 8 {x}^{2} - 2x - 3 = 0[/tex]
mencari akar akar penyelesaian dgn menggunakan methode rumus kuadratik/ABC.
[tex]8 {x}^{2} - 2x - 3 = 0 \\ a = 8 \: \: b = - 2 \: dan \: c = - 3[/tex]
[tex] x_{ 1 \: , \: 2 } = \frac{ -b \: \pm \: \sqrt{ {b}^{2} - 4ac } }{2a} \\ x_{ 1 \: , \: 2 } = \frac{ - ( - 2) \: \pm \: \sqrt{( - 2) {}^{2} - 4(8)( - 3)} }{2(8)} \\ x_{ 1 \: , \: 2 } = \frac{2 \: \pm \: \sqrt{4 + 96} }{16} \\ x_{ 1 \: , \: 2 } = \frac{2\: \pm \: \sqrt{100} }{16} \\ x_{ 1 \: , \: 2 } = \frac{2 \: \pm \: 10 }{16} [/tex]
menentukan akar akar solusi penyelesaian:
[tex] x_{1} = \frac{2+ 10}{16} = \frac{12}{16} = \frac{3}{4} \\ x_{2} = \frac{2- 10}{16} = - \frac{8}{16} = - \frac{1}{2} [/tex]
[tex]HP = ( \: - \frac{1}{2} \: , \: \frac{3}{4} \: ) \\ [/tex]
PEMBAHASAN
Persamaan Kuadrat
16x² - 4x - 6 = 0
8x² - 2x - 3 = 0
(4x - 3)(2x + 1) = 0
4x - 3 = 0 → x = 3/4
atau
2x + 1 = 0 → x = -1/2
x = {-1/2 , 3/4}