Penjelasan dengan langkah-langkah:
PLTV
[tex]x + 2y + 3z = 35 \: \to \: persamaan \: (1) \\ 2x + 3y + z =52 \to \: persamaan \: (2) \\ 3x + y + 2z = 51 \to \: persamaan \: (3)[/tex]
Elimimasi persamaan (1) dan (2)
[tex]x + 2y + 3z = 35 \to \: kalikan \: sama \: dgn \: 2 \\ 2x + 3y + z = 52 \to \: kalikan \: sama \: dgn \: 1[/tex]
[tex]2x + 4y + 6z = 70 \\ 2x + 3y + z = 52[/tex]
[tex]2x + 4y + 6z - (2x + 3y + z) = 70 - 52 \\ 4y - 3y + 6z - z = 18 \\ y + 5z = 18 \: \to \: persamaan \: (4)[/tex]
Eliminasi persamaan (2) dan (3)
[tex]2x + 3y + z = 52 \to \: kalikan \: sama \: dgn \: 3 \\ 3x + y + 2z = 51 \to \: kalikan \: sama \: dgn \: 2[/tex]
[tex]6x + 9y + 3z = 156 \\ 6x + 2y + 4z = 102[/tex]
[tex]7y - z = 54 \to \: persamaan \: (5)[/tex]
[tex]y + 5z = 18 \to \: y = 18 - 5z[/tex]
substitusi nilai y ke dlm persamaan (5)
[tex]7y - z = 54 \\ 7(18 - 5z) - z = 54 \\ 126 - 35z - z = 54 \\ - 36z = 54 - 126 \\ - 36z = - 72 \\ z = 2[/tex]
substitusi nilai z ke dlm persamaan (4)
[tex]y = 18 - 5z \\ y = 18 - 5(2) \\ y = 18 - 10 \\ y = 8[/tex]
substitusi nilai y dan z ke dlm persamaan (1)
[tex]x + 2y + 3z = 35 \\ x + 2(8) + 3(2) = 35 \\ x + 16 + 6 = 35 \\ x + 22 = 35 \\ x = 35 - 22 \\ x = 13[/tex]
[tex] HP (x \: , \: y \: , \: z) = 13 \: , \: 8 \: , \: 2[/tex]
Maka:
x + y + z = 13 + 8 + 2 = 13 + 10 = 23
PEMBAHASAN
SPLTV
x + 2y + 3z = 35
2x + 3y + z = 52
3x + y + 2z = 51__(+)
6x + 6y + 6z = 138
6(x + y + z) = 138
x + y + z = 138/6
x + y + z = 23
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Penjelasan dengan langkah-langkah:
PLTV
[tex]x + 2y + 3z = 35 \: \to \: persamaan \: (1) \\ 2x + 3y + z =52 \to \: persamaan \: (2) \\ 3x + y + 2z = 51 \to \: persamaan \: (3)[/tex]
Elimimasi persamaan (1) dan (2)
[tex]x + 2y + 3z = 35 \to \: kalikan \: sama \: dgn \: 2 \\ 2x + 3y + z = 52 \to \: kalikan \: sama \: dgn \: 1[/tex]
[tex]2x + 4y + 6z = 70 \\ 2x + 3y + z = 52[/tex]
[tex]2x + 4y + 6z - (2x + 3y + z) = 70 - 52 \\ 4y - 3y + 6z - z = 18 \\ y + 5z = 18 \: \to \: persamaan \: (4)[/tex]
Eliminasi persamaan (2) dan (3)
[tex]2x + 3y + z = 52 \to \: kalikan \: sama \: dgn \: 3 \\ 3x + y + 2z = 51 \to \: kalikan \: sama \: dgn \: 2[/tex]
[tex]6x + 9y + 3z = 156 \\ 6x + 2y + 4z = 102[/tex]
[tex]7y - z = 54 \to \: persamaan \: (5)[/tex]
[tex]y + 5z = 18 \to \: y = 18 - 5z[/tex]
substitusi nilai y ke dlm persamaan (5)
[tex]7y - z = 54 \\ 7(18 - 5z) - z = 54 \\ 126 - 35z - z = 54 \\ - 36z = 54 - 126 \\ - 36z = - 72 \\ z = 2[/tex]
substitusi nilai z ke dlm persamaan (4)
[tex]y = 18 - 5z \\ y = 18 - 5(2) \\ y = 18 - 10 \\ y = 8[/tex]
substitusi nilai y dan z ke dlm persamaan (1)
[tex]x + 2y + 3z = 35 \\ x + 2(8) + 3(2) = 35 \\ x + 16 + 6 = 35 \\ x + 22 = 35 \\ x = 35 - 22 \\ x = 13[/tex]
[tex] HP (x \: , \: y \: , \: z) = 13 \: , \: 8 \: , \: 2[/tex]
Maka:
x + y + z = 13 + 8 + 2 = 13 + 10 = 23
PEMBAHASAN
SPLTV
x + 2y + 3z = 35
2x + 3y + z = 52
3x + y + 2z = 51__(+)
6x + 6y + 6z = 138
6(x + y + z) = 138
x + y + z = 138/6
x + y + z = 23