Jawaban:
[tex]\int x - \sqrt{x + 1}= \rm \dfrac{1}{2} {x}^{2} - \dfrac{2}{3} {(x + 1)}^{ \frac{3}{2} } + C[/tex]
Penjelasan dengan langkah-langkah:
[tex]\int x - \sqrt{x + 1}[/tex]
[tex]x = \dfrac{1}{1 + 1} {x}^{1 + 1} = \dfrac{1}{2} {x}^{2} [/tex]
[tex] \rm \sqrt{x + 1} = {(x + 1)}^{ \frac{1}{2} } \rm = \frac{1}{ \frac{1}{2} + 1} {(x + 1)}^{ \frac{1}{2} + 1} = \dfrac{2}{3} {(x + 1)}^{ \frac{3}{2} } [/tex]
Maka:
[tex] = \dfrac{1}{2} {x}^{2} - \dfrac{2}{3} {(x + 1)}^{ \frac{3}{2} } + C[/tex]
Jawab:
[tex]\int\ {x-\sqrt{x+1} } \, dx = \int\ {x-(x+1)^{\frac{1}{2} } \, dx[/tex]
For example :
u = x + 1
[tex]\frac{du}{dx} = 1\\du = dx[/tex]
[tex]\int\ {x-(x+1)^{\frac{1}{2} } \, dx = \int\ {x} dx - \int\ {(x+1)^{\frac{1}{2} } \, dx \\= \int\ {x} dx - \int\ {u^{\frac{1}{2} } \, du \\= \frac{1}{1+1} x^{1+1} - \frac{1}{\frac{1}{2} +1} u^{\frac{1}{2} +1}\\[/tex]
[tex]=\frac{1}{2} x^{2} - \frac{1}{\frac{3}{2} } u^{\frac{1}{2}+1}[/tex]
[tex]=\frac{1}{2}x^{2} - \frac{2}{3} u^{\frac{3}{2} }[/tex]
[tex]=\frac{1}{2}x^{2} - \frac{2}{3} (x+1)^{\frac{3}{2} }[/tex]
[tex]=\frac{1}{2}x^{2} - \frac{2}{3} (x+1).(x+1)^{\frac{1}{2} } \\=\frac{1}{2}x^{2} - \frac{2}{3} (x+1).\sqrt{x+1} +c[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
[tex]\int x - \sqrt{x + 1}= \rm \dfrac{1}{2} {x}^{2} - \dfrac{2}{3} {(x + 1)}^{ \frac{3}{2} } + C[/tex]
Penjelasan dengan langkah-langkah:
[tex]\int x - \sqrt{x + 1}[/tex]
[tex]x = \dfrac{1}{1 + 1} {x}^{1 + 1} = \dfrac{1}{2} {x}^{2} [/tex]
[tex] \rm \sqrt{x + 1} = {(x + 1)}^{ \frac{1}{2} } \rm = \frac{1}{ \frac{1}{2} + 1} {(x + 1)}^{ \frac{1}{2} + 1} = \dfrac{2}{3} {(x + 1)}^{ \frac{3}{2} } [/tex]
Maka:
[tex]\int x - \sqrt{x + 1}[/tex]
[tex] = \dfrac{1}{2} {x}^{2} - \dfrac{2}{3} {(x + 1)}^{ \frac{3}{2} } + C[/tex]
Verified answer
Jawab:
Penjelasan dengan langkah-langkah:
[tex]\int\ {x-\sqrt{x+1} } \, dx = \int\ {x-(x+1)^{\frac{1}{2} } \, dx[/tex]
For example :
u = x + 1
[tex]\frac{du}{dx} = 1\\du = dx[/tex]
[tex]\int\ {x-(x+1)^{\frac{1}{2} } \, dx = \int\ {x} dx - \int\ {(x+1)^{\frac{1}{2} } \, dx \\= \int\ {x} dx - \int\ {u^{\frac{1}{2} } \, du \\= \frac{1}{1+1} x^{1+1} - \frac{1}{\frac{1}{2} +1} u^{\frac{1}{2} +1}\\[/tex]
[tex]=\frac{1}{2} x^{2} - \frac{1}{\frac{3}{2} } u^{\frac{1}{2}+1}[/tex]
[tex]=\frac{1}{2}x^{2} - \frac{2}{3} u^{\frac{3}{2} }[/tex]
[tex]=\frac{1}{2}x^{2} - \frac{2}{3} (x+1)^{\frac{3}{2} }[/tex]
[tex]=\frac{1}{2}x^{2} - \frac{2}{3} (x+1).(x+1)^{\frac{1}{2} } \\=\frac{1}{2}x^{2} - \frac{2}{3} (x+1).\sqrt{x+1} +c[/tex]