Odpowiedź:
a ) [tex]\lim_{n \to \infty} \sqrt[n]{7 + sin n} = 1[/tex]
b ) [tex]a_n = \frac{2^n + 5^n}{5^n- 2^n} = \frac{5^n + 2^n}{5^n- 2^n}[/tex] [tex]= \frac{1 + (\frac{2}{5})^n}{1 - (\frac{2}{5})^n}[/tex]
więc [tex]\lim_{n \to \infty} a_n = \frac{1 + 0}{1 - 0} = 1[/tex]
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
a ) [tex]\lim_{n \to \infty} \sqrt[n]{7 + sin n} = 1[/tex]
b ) [tex]a_n = \frac{2^n + 5^n}{5^n- 2^n} = \frac{5^n + 2^n}{5^n- 2^n}[/tex] [tex]= \frac{1 + (\frac{2}{5})^n}{1 - (\frac{2}{5})^n}[/tex]
więc [tex]\lim_{n \to \infty} a_n = \frac{1 + 0}{1 - 0} = 1[/tex]
Szczegółowe wyjaśnienie: