Jawab:
Terbukti
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned}\frac{\tan^2 x}{\sec^2 x}&\:=\frac{\frac{\sin^2 x}{\cos^2 x}}{\frac{1}{\cos^2 x}}\\\:&=\frac{\sin^2 x}{\cos^2 x}~\frac{\cos^2 x}{1}\\\:&=\sin^2 x\end{aligned}[/tex]
Cara lain menggunakan identitas Pythagoras
[tex]\begin{aligned}\frac{\tan^2 x}{\sec^2 x}&\:=\frac{\sec^2 x-1}{\sec^2 x}\\\:&=\frac{\sec^2 x}{\sec^2 x}-\frac{1}{\sec^2 x}\\\:&=1-\cos^2 x\\\:&=\sin^2 x\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawab:
Terbukti
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned}\frac{\tan^2 x}{\sec^2 x}&\:=\frac{\frac{\sin^2 x}{\cos^2 x}}{\frac{1}{\cos^2 x}}\\\:&=\frac{\sin^2 x}{\cos^2 x}~\frac{\cos^2 x}{1}\\\:&=\sin^2 x\end{aligned}[/tex]
Cara lain menggunakan identitas Pythagoras
[tex]\begin{aligned}\frac{\tan^2 x}{\sec^2 x}&\:=\frac{\sec^2 x-1}{\sec^2 x}\\\:&=\frac{\sec^2 x}{\sec^2 x}-\frac{1}{\sec^2 x}\\\:&=1-\cos^2 x\\\:&=\sin^2 x\end{aligned}[/tex]