[tex]\huge\begin{array}{ccc}a)&\lim\limits_{n\to\infty} a_n=-\infty\\b)&\lim\limits_{n\to\infty} b_n=-\infty\\c)&\lim\limits_{n\to\infty} c_n=\infty\end{array}[/tex]
Wiemy, że:
[tex]\dfrac{a}{n}\xrightarrow{n\to\infty}0[/tex]
[tex]\lim\limits_{n\to\infty}\left(\sqrt{n^2-1}-\sqrt{2n^2-1}\right)=\lim\limits_{n\to\infty}\left(\sqrt{n^2\left(1-\frac{1}{n^2}\right)}-\sqrt{n^2\left(2-\frac{1}{n}\right)}\right)\\\\=\lim\limits_{n\to\infty}\left(\sqrt{n^2}\cdot\sqrt{1-\frac{1}{n^2}}-\sqrt{n^2}\cdot\sqrt{2-\frac{1}{n^2}}\right)\\\\=\lim\limits_{n\to\infty}\left(n\sqrt{1-\frac{1}{n^2}}-n\sqrt{2-\frac{1}{n^2}}\right)[/tex]
[tex]=\lim\limits_{n\to\infty}n\left(\sqrt{1-\frac{1}{n^2}}-\sqrt{2-\frac{1}{n^2}}\right)[/tex]
[tex]\dfrac{1}{n^2}\xrightarrow{n\to\infty}0\\\\\Downarrow\\\\\sqrt{1-\frac{1}{n^2}}\xrightarrow{n\to\infty}\sqrt{1-0}=\sqrt1=1\ \wedge\sqrt{2-\frac{1}{n^2}}\xrightarrow{n\to\infty}\sqrt{2-0}=\sqrt2[/tex]
Jako, że:
[tex]1 < \sqrt2\to1-\sqrt2 < 0[/tex]
W związku z tym:
[tex]\lim\limits_{n\to\infty}\left(\sqrt{n^2-1}-\sqrt{2n^2-1}\right)=-\infty[/tex]
[tex]\lim\limits_{n\to\infty}\left(3-2n^2-n^3\right)=\lim\limits_{n\to\infty}n^3\left(\dfrac{3}{n^3}-\dfrac{2}{n}-1\right)[/tex]
[tex]n^3\xrightarrow{n\to\infty}\infty\\\\\dfrac{3}{n^3}\xrightarrow{n\to\infty}0\\\\-\dfrac{2}{n^2}\xrightarrow{n\to\infty}0\\\\-1\xrightarrow{n\to\infty}-1[/tex]
[tex]\lim\limits_{n\to\infty}\left(3-2n^2-n^3\right)=-\infty[/tex]
[tex]\lim\limits_{n\to\infty}\dfrac{n^2-2}{n+1}=\lim\limits_{n\to\infty}\dfrac{n(n-2)}{n\left(1+\frac{1}{n}\right)}=\lim\limits_{n\to\infty}\dfrac{n-2}{1+\frac{1}{n}}[/tex]
[tex]\dfrac{1}{n}\xrightarrow{n\to\infty}0\\\\1-\dfrac{1}{n}\xrightarrow{n\to\infty}1-0=1\\\\n-2\xrightarrow{n\to\infty}\infty[/tex]
[tex]\lim\limits_{n\to\infty}\dfrac{n^2-2}{n+1}=\infty[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
[tex]\huge\begin{array}{ccc}a)&\lim\limits_{n\to\infty} a_n=-\infty\\b)&\lim\limits_{n\to\infty} b_n=-\infty\\c)&\lim\limits_{n\to\infty} c_n=\infty\end{array}[/tex]
Granica ciągu.
Wiemy, że:
[tex]\dfrac{a}{n}\xrightarrow{n\to\infty}0[/tex]
ROZWIĄZANIE:
a)
[tex]\lim\limits_{n\to\infty}\left(\sqrt{n^2-1}-\sqrt{2n^2-1}\right)=\lim\limits_{n\to\infty}\left(\sqrt{n^2\left(1-\frac{1}{n^2}\right)}-\sqrt{n^2\left(2-\frac{1}{n}\right)}\right)\\\\=\lim\limits_{n\to\infty}\left(\sqrt{n^2}\cdot\sqrt{1-\frac{1}{n^2}}-\sqrt{n^2}\cdot\sqrt{2-\frac{1}{n^2}}\right)\\\\=\lim\limits_{n\to\infty}\left(n\sqrt{1-\frac{1}{n^2}}-n\sqrt{2-\frac{1}{n^2}}\right)[/tex]
[tex]=\lim\limits_{n\to\infty}n\left(\sqrt{1-\frac{1}{n^2}}-\sqrt{2-\frac{1}{n^2}}\right)[/tex]
[tex]\dfrac{1}{n^2}\xrightarrow{n\to\infty}0\\\\\Downarrow\\\\\sqrt{1-\frac{1}{n^2}}\xrightarrow{n\to\infty}\sqrt{1-0}=\sqrt1=1\ \wedge\sqrt{2-\frac{1}{n^2}}\xrightarrow{n\to\infty}\sqrt{2-0}=\sqrt2[/tex]
Jako, że:
[tex]1 < \sqrt2\to1-\sqrt2 < 0[/tex]
W związku z tym:
[tex]\lim\limits_{n\to\infty}\left(\sqrt{n^2-1}-\sqrt{2n^2-1}\right)=-\infty[/tex]
b)
[tex]\lim\limits_{n\to\infty}\left(3-2n^2-n^3\right)=\lim\limits_{n\to\infty}n^3\left(\dfrac{3}{n^3}-\dfrac{2}{n}-1\right)[/tex]
[tex]n^3\xrightarrow{n\to\infty}\infty\\\\\dfrac{3}{n^3}\xrightarrow{n\to\infty}0\\\\-\dfrac{2}{n^2}\xrightarrow{n\to\infty}0\\\\-1\xrightarrow{n\to\infty}-1[/tex]
W związku z tym:
[tex]\lim\limits_{n\to\infty}\left(3-2n^2-n^3\right)=-\infty[/tex]
c)
[tex]\lim\limits_{n\to\infty}\dfrac{n^2-2}{n+1}=\lim\limits_{n\to\infty}\dfrac{n(n-2)}{n\left(1+\frac{1}{n}\right)}=\lim\limits_{n\to\infty}\dfrac{n-2}{1+\frac{1}{n}}[/tex]
[tex]\dfrac{1}{n}\xrightarrow{n\to\infty}0\\\\1-\dfrac{1}{n}\xrightarrow{n\to\infty}1-0=1\\\\n-2\xrightarrow{n\to\infty}\infty[/tex]
W związku z tym:
[tex]\lim\limits_{n\to\infty}\dfrac{n^2-2}{n+1}=\infty[/tex]